
systems & vlsi
technology
division

search
contact hp

svtd home
technical references

pa-risc references
ia-64 references
patents

location
who is svtd
jobs at svtd
ask svtd

systems & vlsi technology division
pa-risc references

Advanced Performance Features of the
64-bit PA-8000
Doug Hunt

Hewlett-Packard Company
Engineering Systems Lab
3404 East Harmony Road, MS#55
Fort Collins, Colorado 80525

Abstract: The PA-8000 is Hewlett-Packard's first CPU to implement the new 64-bit
PA2.0 architecture. It combines a high clock frequency with a number of advanced
microarchitectural features to deliver industry-leading performance on commercial and
technical applications while maintaining full compatibility with all previous PA-RISC
binaries. Among these advanced features are a fifty-six entry instruction reorder buffer
to support out-of-order execution, a branch target address cache, branch history table,
support for multiple outstanding cache misses and dual integer, load/store, floating
point multiply/accumulate, and divide/square root units which allow execution of four
instructions per cycle. Together, these features will enable the PA-8000 to sustain
superscalar operation on a wide variety of workloads.

1. Introduction

Hewlett-Packard's PA-8000 CPU is designed to deliver industry-leading performance on
today's commercial and technical applications while providing a growth path to future
64-bit applications. Maintaining industry-leading performance requires improvement in
both clock frequency and the average number of clock cycles per instruction (CPI).
Since RISC processors are already capable of starting one operation per cycle,
reducing CPI further requires starting more than one operation per cycle. The
PA-7100[1], PA-7100LC[2], and PA-7200[3] have already achieved success as two-way
superscalar implementations, but adding still more functional units is not useful if the
rest of the processor is not capable of supplying those functional units with a
continuous stream of operations to perform. With the PA-8000, Hewlett-Packard
introduces an entirely new microarchitecture with a carefully chosen set of features
designed to sustain superscalar operation on real-world applications.

First, the PA-8000 includes two integer ALUs, two shift/merge units, two floating point
multiply/accumulate units, two divide/square root units and two load/store units.
These functional units are arranged to allow up to four instructions per cycle to begin
execution. To supply these functional units with enough work to keep them busy, the
PA-8000 incorporates a fifty-six entry Instruction Reorder Buffer (IRB) and a dual
ported data cache. In order to keep the buffer as full as possible with instructions to
choose from, the instruction fetch unit is designed to supply four instructions per cycle
from a single-level, off-chip cache. Finally, in order to maximize the usefulness of the
instruction and data caches, a high performance bus interface capable of supporting
multiple outstanding cache misses is provided. This set of features will enable the
PA-8000 to deliver >360 SPECint92 and >550 SPECfp92 at first release. Figure 1 is a
block diagram of the PA-8000 which shows how these components are organized.

1.1. Why out of order?

The fundamental difficulty in achieving sustained superscalar operation is finding
enough independent work to supply the multiple execution units. One way to handle
this problem is to give the burden of finding the parallel work to the compiler by

 

Systems & VLSI Technology Division: PA-8000 Technical White Paper http://web.archive.org/web/20040214092531/http://www.cpus.hp.com/te...

1 of 8 2018-08-03, 2:34 p.m.



requiring that it order the instructions so that every instruction fetch includes more
than one instruction which may be executed at the same time. Unfortunately, there are
many situations where the compiler cannot take advantage of potential parallelism
because of the limited information available at compile time. The design of the
PA-8000 therefore leaves the scheduling of instructions up to the hardware, which can
perform more aggressive reordering than the compiler thereby achieving a higher
utilization of the functional units.

The PA-7100, PA-7100LC, and PA-7200 gain substantial benefit from their two-way
superscalar operation while leaving scheduling to the compiler, but it became apparent
during the investigation which led to the development of the PA-8000 that some
problems would require a fundamentally different approach as the move was made
from two-way superscalar to wider implementations. One of those problems is that
legacy code which was compiled with an earlier compiler would not be optimally
scheduled and would receive very little benefit from the added superscalar hardware.
The more sequential instructions the hardware attempts to execute at once, the more
likely it is that the instruction group will contain instructions which depend on one
another and cannot be executed simultaneously. The PA-8000 addresses this problem
by having the hardware scan a large portion of the program at one time in order to
find opportunities for parallel execution, rather than only considering four instructions
at once. With its large reorder buffer, the PA-8000 can examine over fifty instructions
at one time to find four which are ready to be executed.

A second problem with leaving scheduling up to the compiler is that the compiler often
can only reorder instructions within a narrow window because of such unknowns as
flow of control and pointer aliasing. The PA-8000 addresses this problem by performing
speculative execution of instructions. Speculative execution is nothing more than
guessing what course the program will take and executing instructions from the
appropriate path. If it is later discovered that the guess was incorrect, the speculative
work is discarded.

The PA-8000 actually performs speculative execution in a number of different ways.
First, on every branch fetched, the instruction fetch unit makes an intelligent guess
about whether the branch will be taken or not taken and fetches instructions down the
appropriate path. When the branch is actually executed, the outcome (either taken or
not taken) is compared with the predicted outcome. If the two outcomes do not agree,
the correct address (either the branch target address or the inline address) is
forwarded to the instruction fetch unit and fetching resumes from that point. All
instructions in the IRB younger than the mispredicted branch are discarded.

Another way the PA-8000 performs speculative execution is by executing younger
instructions before it is known whether an older instruction will signal an exception
(trap). A common example of this situation is the execution of a younger instruction
before an older load. The younger instruction must not be allowed to change any
program state if the load signals a TLB miss or protection violation. In the PA-8000,
the younger instruction is allowed to execute early, but its result is discarded if the
older instruction traps.

A third example of speculative execution is the execution of a load before an older
store. In this case, it is possible that the load and the store reference the same
memory location. This should be a rare event since the compiler tends to keep a value
in a register if it will be needed again shortly. However, there are situations where the
compiler cannot know that a load and a store point to the same location in memory,
especially if the load and store are generated by references through pointers. In the
PA-8000, a load may execute before an older store and the hardware checks to see
that the load received valid data before the result is committed to the general
registers. If a load is determined to have received the incorrect data, the load and all
subsequent instructions are flushed from the IRB and refetched.

In each of these three cases, the hardware is able to gain the advantage of performing
work early in the common case where the program flow of control proceeds along
expected lines and only suffers a performance penalty in the cases where the program
flow is not as expected. A compiler often cannot take advantage of the same
parallelism because it would have to add so many runtime checks to ensure the
reordering was safe that the benefit of reordering the code would be lost.

2. Instruction fetch unit

The IRB can only do its job of supplying the execution units with plenty of work if the
buffer itself has an adequate supply of incoming instructions. The PA-8000 instruction
fetch unit fetches up to four quadword-aligned instructions per cycle from a single-

 

Systems & VLSI Technology Division: PA-8000 Technical White Paper http://web.archive.org/web/20040214092531/http://www.cpus.hp.com/te...

2 of 8 2018-08-03, 2:34 p.m.



level off-chip instruction cache. This is the same bandwidth as the maximum execution
rate of the functional units. The instruction cache, which is constructed of synchronous
SRAMs, has a two cycle latency. Adding the cycle it takes to calculate the target
address of a branch means that there is a two cycle penalty for fetching the target of a
correctly predicted taken branch from this cache.

To reduce the penalty for taken branches, the PA-8000 incorporates a thirty-two entry
fully associative Branch Target Address Cache (BTAC) which associates the address by
which a branch is fetched with the address of the target of the branch for branches
which are predicted taken. On every instruction fetch, the address sent to the
instruction cache is also sent to the BTAC. Whenever the BTAC signals a hit, the
address supplied by the BTAC is used as the next fetch address. This means that
correctly predicted taken branches which hit the BTAC suffer no penalty, since the
quadword containing the target of the branch will arrive on chip the cycle after the
branch itself arrives. A new entry is inserted into the BTAC each time a predicted-taken
branch is fetched for which there is not already an entry in the BTAC. This insert does
not cause any additional instruction fetch penalty. A "round robin" replacement policy
is employed.

2.1. Branch prediction

To achieve sustained superscalar operation, it is important that the number of
mispredicted branches be minimized. To improve branch prediction accuracy, two
different methods of branch prediction are provided: static and dynamic. In static
prediction mode, the fetch unit follows the following policy: For most conditional
branches, backward branches are predicted "taken" and forward branches are
predicted "not taken". For the common compare and branch instruction, a hint is
specifically encoded in the instruction to tell the instruction fetch unit which way to
predict the branch. Compilers using either heuristic methods or Profile Based
Optimization (PBO) can rearrange code segments or use the hinted branches to
effectively communicate branch probabilities to the hardware.

In dynamic prediction mode, a 256-entry Branch History Table (BHT) is consulted to
determine which way each branch should be predicted. Each entry in the BHT is a
three-bit shift register which records the last three outcomes (taken or not taken) of a
given branch. If a majority of the last three executions were actually taken, the fetch
unit predicts that the branch will be taken again. This table is only updated as branch
instructions are retired in order to prevent corrupting the history information with
speculative executions of the branch.

The branch prediction mode used (either static or dynamic) is controlled on a page-by-
page basis by an extra bit in each entry of the TLB. Thus, it is possible for programs
compiled with PBO to take advantage of the profile information, while programs which
have not been profiled use dynamic prediction. It is also possible for shared libraries to
be profiled, if appropriate, in which case even non-profiled applications will gain the
benefit of the profiling of the libraries. This also has the advantage that the library
code will not displace the history information in the BHT, improving its effectiveness for
the main body of the program.

Note that it is possible for the BTAC to signal a hit (indicating a predicted-taken
branch) when the BHT signals that the branch should be predicted not-taken or that an
older branch in the group should have been taken instead. In this case, the
corresponding entry in the BTAC will be deleted to prevent another hit of the BTAC on
that branch.

2.2. Why no on-chip instruction cache?

An instruction cache can improve performance in two main ways: it can reduce the
latency of instruction fetches and it can be designed to provide more bandwidth to the
processor than the next level of the memory hierarchy can provide. HP's low-cost
processor, the PA-7100LC, is the only HP PA-RISC processor to include an on-chip
instruction cache. Since the design of the PA-7100LC was driven by the need to
minimize overall system cost, a single combined off-chip cache was provided. This
necessitated including an on-chip instruction cache to provide sufficient instruction
fetch bandwidth to the execution units without overly impacting the data cache
performance.

The PA-8000, on the other hand, is designed to maximize performance. For many real-
world applications, especially some commercial applications such as transaction
processing, delivering high performance requires a larger instruction cache than can be
included on-chip. Furthermore, a four-way superscalar design such as the PA-8000

 

Systems & VLSI Technology Division: PA-8000 Technical White Paper http://web.archive.org/web/20040214092531/http://www.cpus.hp.com/te...

3 of 8 2018-08-03, 2:34 p.m.



requires a wide connection to this large instruction cache to avoid substantial fetch
penalties. Once the decision has been made to design a high-bandwidth connection to
a large off-chip cache, an on-chip cache provides no added benefit from a bandwidth
perspective.

As far as latency is concerned, the only time the latency of an instruction fetch matters
is when a branch is involved. This is because the instruction fetch unit does not need
to see the incoming instructions to calculate the next address to fetch if the program is
executing sequentially. As mentioned earlier, the BTAC avoids the taken branch penalty
for most of the taken branches which are encountered. This means that the only time
the reduced latency provided by an on-chip cache would come into play is in the case
of a mispredicted branch. Since the aggressive design of the off-chip cache path
resulted in a two-cycle latency, an on-chip cache could only save one cycle in the rare
event of a mispredicted branch. This being the case, the die area was used for more
effective performance features, particularly the fifty-six entry instruction reorder
buffer, rather than for an on-chip cache.

3. Instruction reorder buffer

The fifty-six entry Instruction Reorder Buffer (IRB) is physically organized as two
separate buffers of twenty-eight entries each. One buffer is used to hold instructions
which are destined for either the integer units or the floating point units and the other
buffer holds both integer and floating point load and store instructions. Some
instructions are inserted into both buffers. These instructions are: (1) load-and-modify
instructions, for which the modify is handled by an integer ALU; (2) branches, which
go into both buffers to help in recovery from mispredicted branches; and (3) certain
system control instructions.

Insertion of instructions into the two buffers in the IRB is controlled by the sort unit.
This unit receives the four instructions from the instruction fetch unit and routes each
of them to one or both of the buffers in the IRB. Each buffer can accept up to four
instructions per cycle, so an arbitrary collection of four instructions may be inserted
simultaneously.

Once an instruction has been inserted into a slot of the IRB, the hardware watches
each of the instructions launching to the functional units and checks to see whether
any of them supplies any of the operands which the instruction in the slot requires.
Once the last instruction upon which the slot is waiting has been launched, the slot
begins to arbitrate for launch to the functional units. Even though the instructions are
segregated into two different buffers, all of the launch information is visible to both
buffers. No extra penalty is incurred for bypassing information from instructions in one
buffer to instructions in the other buffer.

Up to two instructions per cycle may be launched from each buffer in the IRB.
Arbitration in each buffer is handled in two groups. All of the even-numbered slots in
the ALU buffer which are ready to launch arbitrate for launch to alu0 and all of the odd
slots arbitrate for launch to alu1, and similarly for the memory buffer. In each buffer,
the even-numbered slot containing the oldest instruction and the odd-numbered slot
containing the oldest instruction win arbitration and are launched to the execution
units or the address adders.

3.1. Retirement

Instructions are removed from the IRB in program order after they have successfully
executed or their trap status is known. Up to four instructions may be retired per cycle.
At retire time, the contents of the rename register associated with a given instruction
are committed to the architected registers, and store data is forwarded to the store
queue (discussed later). If an instruction needs to signal a trap, the trap parameters
are recorded in the architected state and the appropriate trap vector is forwarded to
the instruction fetch unit which begins fetching from that address. The fact that
instructions are retired in program order and that traps are signalled when an
instruction retires enables the PA-8000 to provide a precise exception signalling model.

4. Loads and stores

A frequent cause of pipeline stalls in pipelined in-order machines is that instructions
must often wait for the result of preceding load operations. Previous implementations
of PA-RISC[4] have implemented stall-on-use and hit-under-miss policies to avoid
these penalties in the case of data cache misses. Unfortunately, these techniques are
insufficient to avoid large performance penalties when more instructions are executed
simultaneously. In fact, load/use penalties can be a serious performance limiter even

 

Systems & VLSI Technology Division: PA-8000 Technical White Paper http://web.archive.org/web/20040214092531/http://www.cpus.hp.com/te...

4 of 8 2018-08-03, 2:34 p.m.



when loads hit the data cache. As applications demand larger caches to support bigger
working sets and as the operating frequency of processors increases, the number of
clock cycles required to load data from the data cache increases. This problem is
exacerbated in a wide superscalar machine because the distance which must separate
a load from the use of its data to avoid a stall is likely to be more than the compiler
can accommodate (refer to section 1.1).

Out-of-order execution is obviously a substantial advantage in being able to avoid
load/use penalties. Given that the PA-8000 can dynamically schedule instructions over
a window of more than fifty instructions, the hardware can look beyond the
instructions dependent on a load and find other instructions ready to be executed. This
is especially helpful in the case of data cache misses since, if the hardware finds
another load or store which misses the data cache, that miss will also be issued on the
system bus. Since the two miss transactions are overlapped, the total performance
penalty is less than the cost of two sequential data cache misses. The PA-8000 can
support up to ten such outstanding data cache misses at one time. This is
accomplished without sacrificing a strongly ordered programming model.

When a slot containing a load or store operation determines that the operands required
for calculating its effective address are available, it arbitrates for launch to the address
adders, just as instructions in the ALU buffer launch to the integer and floating point
units. Once the address is calculated, the address is stored in the address reorder
buffer (ARB). The effective address is also sent to the TLB, which is dual ported, and
the physical page number associated with the effective address is also stored in the
ARB. The ARB is twenty-eight slots deep, and each slot of the ARB is associated with a
slot of the memory buffer in the IRB.

The ARB is the interface to the dual-ported, single-level off-chip data cache. The two
ports of the data cache are connected to separate banks of synchronous SRAMs, one of
which contains even-numbered doublewords and the other odd-numbered
doublewords. The data cache may be up to four Mbytes in size.

Once an address has been sent to the ARB, if no other instruction is arbitrating for
access to the appropriate bank of the data cache, the cache access is immediately
launched to the RAMs. In this case, load data arrives back on the chip in time for a
dependent instruction to launch on the third cycle after the load launched to calculate
its effective address.

In the event that a load cannot immediately access the data cache port it needs, it
begins to arbitrate for access on each successive cycle until it wins arbitration.
Arbitration is granted based on the age of the originating instruction, not the length of
time a load has been in the address reorder buffer. Instructions in the IRB are
informed of the status of loads in progress so that instructions waiting for load data do
not arbitrate for launch until the load has won access to the data cache. In this way,
the execution units continue to work on other, younger instructions which do have all
their operands available.

Store instructions merely perform a tag lookup at the time when a load would read the
cache. In the event that the store misses the cache, it proceeds to issue its miss to the
system bus. Store data is copied from the register file to the store queue at retire
time.

The store queue is a structure which can hold up to eleven doublewords of write data
for each bank of the data cache. The store queue uses idle cycles, or cycles when other
stores are performing tag lookups, to perform its writes to the data cache. By deferring
cache writes to otherwise idle cycles, loads are less likely to be held off from accessing
the cache due to contention. Another benefit of the store queue is that stores of less
than doubleword size may be merged into a single cache write, thus improving cache
utilization. Loads may bypass data directly from the store queue.

Store-to-load dependency checking is implemented through address comparisons
performed in the ARB. When a store instruction calculates its effective address, all
younger load instructions which have completed their access to the cache compare
their address against the store address. If the load detects a match, the load and all
younger instructions are flushed from the IRB and re-executed. When a load calculates
its effective address, all older stores compare their address against the load address
and, if they detect a match, the load waits until the store data is available.

Loads and stores to the I/O address space and semaphore instructions do not issue
transactions on the system bus until they are the oldest instructions in the IRB so that
they do not issue speculatively.

 

Systems & VLSI Technology Division: PA-8000 Technical White Paper http://web.archive.org/web/20040214092531/http://www.cpus.hp.com/te...

5 of 8 2018-08-03, 2:34 p.m.



Support for explicit data cache prefetching is implemented in the PA-8000 via loading
to general register zero. This operation may cause a data cache miss which will be
issued on the system bus, but the instruction will not cause a trap if the access misses
the TLB or if the access fails protection checks. (In these cases, the instruction
executes as a NOP.) Unlike ordinary loads, a load to general register zero may retire
before a data cache miss it has initiated has been returned from memory. The return
data will still be written into the data cache. If a subsequent ordinary load is
encountered before the data is returned from memory, the ordinary load is informed
that the miss has already been issued, and a second miss to the same address is
suppressed.

4.1. TLB

The ninety-six entry Translation Lookaside Buffer (TLB) of the PA-8000 is fully dual-
ported in order to support two data cache accesses per cycle without requiring these
two accesses to be to the same page. Each entry in the TLB may map any power-of-
four sized segment of memory from 4 Kbytes to 16 Mbytes. In addition to the main
TLB, the instruction fetch unit maintains a buffer of four translations for its use.
Whenever the fetch unit misses its set of translations it sends a request to the main
TLB to perform a translation on its behalf. This new translation is then inserted into the
fetch unit's buffer. Translations for loads and stores take precedence over translations
for instruction fetches. A bypass path is provided so that, in the event a mispredicted
branch misses the translation buffer in the instruction fetch unit, the translation from
the main TLB is available in time to perform the cache tag compare for the first fetch
at the new address.

4.2. Multiprocessing support

The PA-8000 supports a snoopy multiprocessor cache coherency protocol. No external
logic is required for up to eight-way multiprocessing. Support is also provided for
higher-order multiprocessing using a hierarchical bus structure.

Incoming Cache Coherency Checks (CCCs) take just one cycle from one bank of the
data cache to perform their snoop of the data cache. This very low cost for CCCs
means that, even on a fully saturated system bus, CCCs consume no more than 10%
of the available data cache bandwidth if they all miss. Even in a system where the
system bus is saturated and every CCC hits dirty, the CCCs consume no more than
50% of the victim processor's data cache bandwidth. No other penalty is paid by the
victim processor. Instruction fetching is unaffected, the ALUs are unaffected, and the
other data cache cycles are fully available.

CCCs use the same address comparison mechanism to implement strong ordering
between processors as is used to detect store-to-load dependencies within a single
processor. If an incoming CCC matches a load or store in the ARB, that load or store is
flushed and re-executed.

5. Execution units

The PA-8000 integer units implement the new 64-bit functionality in PA2.0 while
maintaining full compatibility with existing 32-bit binaries. The new 64-bit operations
may be executed even by a program executing with 32-bit addressing, so compilers
can take advantage of the wider datapath to improve performance even on 32-bit
code. Each integer unit includes shift/merge logic so that it can execute any of the
extract or deposit instructions as well as the normal arithmetic operations. A branch
adder is also associated with each integer unit.

The floating point hardware in the PA-8000 consists of two multiply-and-accumulate
(MAC) units and two divide/square root units. The MAC units perform the very
common operation D = A*B+C. These units have a latency of three cycles and are fully
pipelined so they may accept a new operation every cycle, giving a maximum
throughput of four FLOPs per cycle. Multiply operations and add operations are also
handled by the MACs.

The divide/square root units have latencies of 17 for single-precision operations and 31
for double-precision operations. These units are not pipelined, but other FLOPs may
execute on the MACs while the divide/square root units are busy. The combination of
multiple execution units, a dual-ported data cache, support for up to ten pending data
cache misses, and explicit data prefetching support provides exceptional floating point
performance, even on workloads whose working sets are larger than the data cache.

6. System interface (Runway)

 

Systems & VLSI Technology Division: PA-8000 Technical White Paper http://web.archive.org/web/20040214092531/http://www.cpus.hp.com/te...

6 of 8 2018-08-03, 2:34 p.m.



The PA-8000 interfaces directly to the Runway bus, which is the same bus used by the
PA-7200[3]. This is a 64-bit multiplexed address/data split transaction bus. The bus
supports the full 40-bit physical address space of the PA-8000, allowing access to as
much as 960 gigabytes of RAM. Arbitration takes place on separate wires, so it does
not consume any bus cycles.

The bus interface logic of the PA-8000 allows up to ten data cache misses, one
instruction cache miss, and one instruction cache prefetch to be pending at the same
time for the local processor. These transactions may return in any order, allowing
improved memory system performance in the presence of bank contention. Instruction
cache prefetches are initiated by the bus interface itself by fetching the next sequential
line whenever a cache miss is received from the instruction fetch unit.

The bus interface supports cpu:bus frequency ratios of 1:1, 4:3, 3:2, 5:3, 2:1, 7:3,
5:2, and 3:1. That is, the processor uses a clock which is at least as fast as the system
bus clock and may be up to three times as fast as the system bus. This flexibility
allows the design of a wide range of products combining various processor speeds and
bus frequencies to produce the highest possible system performance from the available
subsystems.

7. Other performance features

In addition to those features already outlined, the PA-8000 implements a number of
new features added to PA-RISC in PA2.0 to improve performance:

A 22-bit displacement instruction address relative branch to reduce the cost of
procedure calls to distant procedures
A short pointer external branch to reduce the overhead of branching between
spaces
A fast TLB insert mechanism to reduce the cost of TLB misses
Longer (16-bit) displacement load and store operations
New variants of the Floating-Point Compare and Floating-Point Test instructions
to allow multiple independent conditions to be tested

7.1. Performance monitoring

Perhaps one of the most important performance features of the PA-8000 is the
hardware that has been included for performance monitoring and debug support.
Hardware has been included that can match specified patterns of instruction opcode,
address, cache hit/miss status, and branch mispredictions. These match signals can be
combined using an on-chip state machine to detect specific sequences of events.
Finally, the state machine can cause one of four event counters to increment. The
event counters may also be programmed to increment based on a number of other
control signals that indicate what the processor is doing at any given time. This
hardware will be used by HP's performance analysis group to identify opportunities for
compiler improvements to achieve even higher performance with the PA-8000. It will
also be used to evaluate additional features which could be of benefit in future
processor designs.

8. Conclusions

Hewlett-Packard's PA-8000 CPU is designed to deliver industry-leading performance on
both commercial and technical applications and provide a growth path for future 64-bit
applications. It achieves its high performance through a combination of high clock
frequency and sustainable superscalar operation. Sustainable superscalar operation is
accomplished by matching dual integer, floating point multiply/accumulate, and
divide/square root functional units with a very deep instruction reorder buffer, a high
performance instruction fetch unit, dual ported data cache and and support for multiple
pending cache misses.

Acknowledgements

Many people have been involved in the development of the PA-8000 and the author
would like to thank all of them for the tremendous effort they have put in to make this
processor possible. Special recognition is warranted for those individuals who worked
on the project from its earliest days and who set the direction of the design: Gregg
LeSartre, Jon Lotz, Don Kipp, Darius Tanksalvala, and Steve Mangelsdorf.

References

[1] E. DeLano, et al, "A High Speed Superscalar PA-RISC Processor", Compcon Digest
of Papers, February 1992, pp. 116-121.

 

Systems & VLSI Technology Division: PA-8000 Technical White Paper http://web.archive.org/web/20040214092531/http://www.cpus.hp.com/te...

7 of 8 2018-08-03, 2:34 p.m.



[2] P. Knebel, et al, "HP's PA7100LC: A Low-Cost Superscalar PA-RISC Processor",
Compcon Digest of Papers, February 1993, pp. 441-447.

[3] G. Kurpanek, et al, "PA7200: A PA-RISC Processor with Integrated High
Performance MP Bus Interface", Compcon Digest of Papers, February 1994, pp.
375-382.

[4] R. B. Lee, "Precision Architecture", IEEE Computer, Vol. 22, No. 1, January 1989,
pp. 78-91.

printing instructions

privacy statement using this site means you accept its terms © 1994-2004 hewlett-packard company

 

Systems & VLSI Technology Division: PA-8000 Technical White Paper http://web.archive.org/web/20040214092531/http://www.cpus.hp.com/te...

8 of 8 2018-08-03, 2:34 p.m.


