
PA-RISC 1.1 Firmware Architecture
Reference Specification

Version 0.96 Printed in U.S.A. March 8, 1999

Notice
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential
damages in connection with furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information that is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced, or translated to another language without the
prior written consent of Hewlett-Packard Company.

Copyright 1983-1999 by HEWLETT-PACKARD COMPANY All Rights Reserved
LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
__

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L__

1. PDC Procedures
The objective of PDC is to provide a uniform, architected context in which to perform processor-dependent
operations. One of the two PDC mechanisms is a software entry point which provides a variety of options to
execute specific procedures. These procedures access processor-dependent hardware and return parameters that
characterize or identify the processor.

PDC stands for processor-dependent CODE, because the most natural implementation is via Precision code stored
in a processor ROM. This does not preclude special hardware support for PDC operations. Any of the PDC
procedures may be performed by any combination of code and hardware. In particular, a support processor may be
valuable in performing some PDC procedures.

All PDC procedures are provided as options to a single entry point called PDCE_PROC. PDC is a per processor
resource, and operating system software must be prepared to manage separate pointers to PDCE_PROC for each
processor. The address of PDCE_PROC for the monarch processor is stored in the Page Zero location MEM_PDC.
The address of PDCE_PROC for each non-monarch processor is passed in GR26 when PDCE_RESET invokes
OS_RENDEZ. The procedure options are selected by the value of the index ARG0 in the call to PDCE_PROC.

ENGINEERING NOTE

A single copy of PDC may be shared between separate Category B processors, provided semaphores or
other similar mechanisms are employed within PDC, so that each processor appears to have its own
copy.

The calling conventions for PDC procedures are defined in Section 1.1. Section 1.2 contains a table listing all
architected PDC procedures. It is followed by a set of pages giving specifications of the PDC procedures. The
procedure pages appear in alphabetical order.

Some of the resources used by PDC procedures are system wide and not per processor. This is specified in the
respective PDC procedures. When more than one processor module exists on a system, each processor module
must return its associated value for per processor resources. For access to system-wide resources, the same value
must be returned no matter on which processor the PDC procedure is called.

For all the PDC procedures there is no change in the architecturally visible module state, except where changes
have been specified in the respective PDC procedures and calling conventions.

The architected operation of a module (including execution of PDC) must not require the use of any non-
architected PDC procedures. It must also not require the use of any non-architected options in architected PDC
procedures.

The converse is also true: the execution of a non-architected PDC procedure (or a non-architected option of an
architected procedure) must not affect the architected operation of a module.

PDC procedures must not call IODC entry points.

Firmware Architecture, Ver 0.96 PDC Procedures 1-1

1.1 Calling Conventions
The PDC procedures provide a procedural interface to module-type dependent code for processors. The calling
convention used for these procedures is a subcase of the one defined in theProcedure Calling Convention ACD,
Version 4.1, which allows high level language code to call PDC.

The applicable portions of the calling convention are summarized here; refer to theProcedure Calling Convention
ACD for details. This subset of the calling convention used by PDC is frozen in the I/O Architecture. Indirect calls
through special stubs will be required if the convention changes in the future.

These calling conventions do not apply to the PDC entry points triggered by TOC, reset, or machine checks.

1.1.1 Processor State

The processor must be in the following state when PDC procedures are called:

• The processor must be at Privilege Level 0 at entry, during the PDC procedure call, and at exit.

• The Interruption Vector Table (IVT) is defined by the caller at entry. PDC procedures must not write to the IVT.
When the PDC procedure is exited, the IVT must have the same value it had when the procedure was entered.

The following table defines the requirements for the Processor Status Word (PSW) at entry to, during, and at exit
from a PDC procedure call. The terms used in the definition of the requirements have the following meaning:

Definition of entry and exit:

Entry Start of the first instruction of the PDC procedure.

Exit Start of the first instruction after return to caller’s code.

Terms used to define entry and exit values:

0 Must be set to 0 at entry to or exit from the procedure.

1 Must be set to 1 at entry to or exit from the procedure.

C The state of bits marked with C are defined by the caller. If the value at exit is also C, it must be the same as
the value at entry.

X Don’t care. On entry, the caller may set these bits to any value. The PDC procedure must not attribute any
meaning to the state of these bits. On exit, the PDC procedure may set these bits to any value. The caller
must not attribute any meaning to the state of these bits.

Terms used to define allowed actions during execution of the PDC procedure.

Unchanged The PDC procedure must not change these bits from their entry values at any time during execution
of the procedure.

Unspecified There are no requirements on the state of these bits. The PDC procedure may modify them as
necessary during execution of the procedure.

Restored The PDC procedure may modify these bits as necessary during execution of the procedure, however,
they must be restored to their entry value prior to exit from the procedure.

1-2 PDC Procedures Firmware Architecture, Ver 0.96

State requirements for the Processor Status Word:

PSW Entry During PDC Exit Name
Bit Value Execution Value

S1 C Unchanged C Secure Interval Timer
T 0 Unchanged 0 Taken Branch Trap Enable
H 0 Unchanged 0 Higher Privilege Transfer Trap Enable
L 0 Unchanged 0 Lower Privilege Transfer Trap Enable
N2 0 Unspecified 0 Nullify
X2 0 Unspecified 0 Data Memory Break Disable
B2 0 Unspecified 0 Taken Branch
C 0 Unchanged 0 Code Address Translation Enable
V3 X Unspecified X Divide Step Correction
M 04 Restored 04 High Priority Machine Check Mask

C/B3 X Unspecified X Carry/Borrow Bits
R 0 Unchanged 0 Recovery Counter Enable
Q 1 Restored 1 Interruption State Collection Enable
P1 C Restored C Protection Identifier Validation Enable
D 0 Unchanged 0 Data Address Translation Enable
I 0 Unchanged 0 Ext, P-fail Interrupt, LPMC Unmask
E 0 Unchanged 0 Little-Endian Enable
F 0 Unchanged 0 Performance Coprocessor Enable

G5 0 Unchanged 0 Debug Trap Enable
Y5 0 Unchanged 0 Data Debug Trap Disable
Z5 0 Unchanged 0 Instruction Debug Trap Disable

Notes

1. These bits are Defined by the caller. Their value at exit must be the same at their value at entry.

2. These bits are changed by normal instruction execution. They will be 0 on entry and exit from the PDC procedure. No action is required
by the caller.

3. These bits are set by arithmetic instructions during normal execution. No Action is required by the caller.

4. Except when PDC_PIM is called with ARG1=0, in which case the M-bit must be 1.

5. These bits are implemented only on level 0 processors which also implement the debug SFU. In all other cases they are reserved bits.

1.1.2 Register State

The following four tables define the requirements for the State of the Control Registers, Space Registers, General
Registers, and Floating Point Registers at entry to, during, and at exit from a PDC procedure call. The terms used
in the definition of the requirements have the following meaning:

Terms used to define entry and exit state:

C Defined by the Caller. The value at entry is defined by the caller of the PDC procedure. If the value at exit is
also defined by caller, it must be the same as the value at entry.

HV HVERSION (processor) dependent. The value, if it exists, is dependent on the HVERSION of the processor.
It must not be used by the PDC procedure or its caller.

X Don’t Care. On entry, the caller of the PDC procedure may set the register to any value. The PDC procedure
must not attribute any meaning to the value. On exit, the PDC procedure may set the register to any value.
The caller must not attribute any meaning to the value.

U The value of the register is not defined for either the PDC procedure on entry or the caller on exit from the
procedure.

V The value at exit is a result obtained by execution of the PDC procedure.

The terms used to define allowed actions during execution of the PDC procedure are the same for Registers as for
PSW bits, with the following additions:

Firmware Architecture, Ver 0.96 PDC Procedures 1-3

Set Result During the PDC procedure call a result is placed in the register prior to exit.

Unused The PDC procedure is not allowed to write to or rely on the value in the register. However the
register may not contain the value at entry during the entire call and at exit.

Register state requirements for Control Registers:

CR Entry During PDC Exit Name
No. Value Execution Value

0 C Unchanged C Recovery Counter
1-7 HV Undefined HV None (HVERSION Dependent)
8 C Unchanged C Protection ID 1
9 C Unchanged C Protection ID 2
10 C Unchanged/ C/V Coprocessor Configuration Register

Set Result1

11 C Unspecified X Shift Amount Register
12 C Unchanged C Protection ID 3
13 C Unchanged C Protection ID 4
14 C Unchanged/ C Interruption Vector Address

Restored2

15 C Restored C External Interrupt Enable Mask
16 C Unused3 C3 Interval Timer
17 U Unused U Interruption Instruction Address Space Queue
18 U Unused/ U Interruption Instruction Address Offset Queue

Unspecified4

19 U Unused U Interruption Instruction Register
20 U Unused U Interruption Space Register
21 U Unused U Interruption Offset Register
22 U Unused/ U Interruption Processor Status Word

Unspecified4

23 C Unchanged C External Interrupt Request Register
24-31 U Unused/ U Temporary (for interruption handler Use)

Unspecified5

Notes:

1. The only PDC procedure that is allowed to read from or write into the Coprocessor Configuration Register (CR 10) is PDC_COPROC.
The exit state of CR 10 is either the value at entry, or the valueccr_functionalprovided by PDC_COPROC.

2. PDC Procedures may write to the IVA (CR 14) only if they handle their own interruptions. The address of the PDC procedure’s
interruption handlers is written to CR 14. The caller’s interruption handler must be restored before returning to the caller.

3. No called PDC procedure is allowed to write to the Interval Timer(CR 16). The value at exit is the value at entry plus the elapsed time of
the procedure call.

4. PDC procedures may write to CR 18 and CR 22 when it is necessary for them to modify PSW bits. Only the PSW bits to be changed may
be written to CR 22. A Return From Interruption (RFI) instruction must be executed as early as possible following the writes to CR 18

and CR 22 to reduce the probability of the value written to these registers by the PDC procedure being destroyed by an interruption.

PROGRAMMING NOTE

It is recommended that an RFI instruction immediately follow writes to CR 18 and CR 22.

5. CR 24 through CR 31 are defined for interruption handler use. If a PDC procedure handles its own interruptions, the handler may use
these registers for temporary storage. Otherwise, PDC procedures must not write to nor rely on the contents of these registers.

1-4 PDC Procedures Firmware Architecture, Ver 0.96

Register state requirements for Space Registers:

SR Entry During PDC Exit
No. Value Execution Value

0-2 X Unspecified X
3-7 C Restored C

Register state requirements for General Registers:

GR Entry During PDC Exit Usage
No. Value Execution Value

0 0 Unchanged 0 Zero
1 X Unspecified X Temporary storage (scratch)
2 C Unspecified1 X Return Address of caller

3-18 C Restored C Temporary storage (callee saves)
19-22 X Unspecified X Temporary storage (caller saves)

23 C Unspecified X ARG3
24 C Unspecified X ARG2
25 C Unspecified X ARG1
26 C Unspecified X ARG0
27 C Restored C Defined by caller
28 X Set Result V Return Status
29 X Unspecified X Unspecified
30 C Restored C Caller Stack Pointer
31 X Unspecified X Temporary storage (scratch)

Notes:

1. The PDC Procedure may modify GR 2 as necessary during execution, and the caller may not rely on the contents of GR 2 after the call.
The PDC procedure must maintain the value passed in GR2 by the caller to use as a return address after the call completes.

Register state requirements for Floating Point Registers:

FPR Entry During PDC Exit
No Value Execution Value

0 C Unchanged/1 C/V/HV1

Set Result
1-31 C Unchanged/1 C/HV1

Unspecifed

Notes:

1. The floating point registers FPR0 through FPR31 are defined by the caller at entry and must be unchanged by all procedures except
PDC_COPROC. When PDC_COPROC exits, the values of FPR 0 through FPR 31 are all HVERSION dependent except for the T bit of
FPR 0. The T bit of FPR0 returns the test status and must be set to 0 if the test succeeds.

Firmware Architecture, Ver 0.96 PDC Procedures 1-5

1.1.3 Stack Usage

The caller of PDC procedures must provide a doubleword-aligned value in GR 30, the Stack Pointer (SP), which
points to the following data:

ARG7

ARG6

ARG5

ARG4

SAVE_ARG3

SAVE_ARG2

SAVE_ARG1

SAVE_ARG0

frame marker

temporary storage

SP - 64

SP - 60

SP - 56

SP - 52

SP - 48

SP - 44

SP - 40

SP - 36

SP - 32

SP

The values of SAVE_ARG0 through SAVE_ARG3 are defined by the caller at entry, and are unspecified at exit.
They are used to save the first four arguments to the procedure, which are passed to the procedure in registers GR26
through GR23, respectively. Additional arguments are passed on the stack in successive locations (ARG8 at SP-68,
ARG9 at SP-72, ARG10 at SP-76, etc.)

When the called procedure returns, the value of SP must be restored. The memory at the Stack Pointer address SP
and the next 7K bytes of larger physical addresses are available for temporary use by the called procedure. If the
called procedure is PDC_POW_FAIL, the memory at the Stack Pointer address SP and the next 512 bytes of larger
physical addresses are available for use by PDC_POW_FAIL.

1.1.4 Arguments

The procedure to be performed is selected by the indexARG0. ARG0 is not explicitly listed in the procedure
specifications that follow. The ARG0 value for all PDC procedures is a 32-bit unsigned integer.

The option of the procedure is selected byARG1. For architected PDC procedures, options 0 through 127 are
architected or reserved; the remaining options (128 through X’FFFFFFFF) are for HVERSION-dependent use. For
HVERSION-dependent PDC procedures, all options are for HVERSION-dependent use. The ARG1 value for all
PDC procedures is a 32-bit unsigned integer.

Many PDC procedures use the standard argumentR_addrto designate the return parameter buffer. This buffer is a
doubleword-aligned block of 32 words allocated by the caller. The procedure can return parameters to its caller by
storing into the buffer. If theR_addrargument is provided, it is alwaysARG2.

In the procedure specifications that follow, the notation ’R’ is used to indicate an argument passed to a PDC
procedure which is reserved for future extensions. Reserved arguments must be set by all current callers to 0, and
must be ignored by all current callees. Reserved arguments may be architected in the future, with the value 0
defined to preserve compatibility with previous versions.

The notation ’HV’ is used to indicate that the value of the argument is not specified by the architecture and so may
be freely chosen by the caller. By contrast, arguments denoted by ’---’ are nonexistent: the caller is not required to
provide such arguments at all. Callees must not attach any significance to ’HV’ arguments and must not attempt to
access ’---’ arguments.

1-6 PDC Procedures Firmware Architecture, Ver 0.96

All address parameters which are passed as arguments or are returned as parameters are 32-bit unsigned integers.
The alignment restrictions for these address parameters are specified in each of the PDC procedures.

All signed integers are represented in two’s complement (32-bit) format.

1.1.5 Return Parameters

If a PDC procedure returns parameters to its caller, they are stored in the return parameter buffer specified by
R_addr. The 32 returned parameters are called RET[0] through RET[31]. At least RET[0] through RET[15] are
designated for architected return parameters. Return parameters in RET[16] through RET[31] which are not
architecturally defined may be used for HVERSION-dependent purposes. All return parameters neither architected
nor used for HVERSION-dependent purposes must be set to 0 by the PDC procedure upon return. The notation ’R’
indicates a return value that must be set to 0 by the PDC procedure. The notation ’---’ indicates that the PDC
procedure does not return any parameters.

If a PDC implementation defines a new dependent return word for a procedure, the value 0 must be used to indicate
"not implemented" to preserve compatibility with previous versions.

For HVERSION-dependent PDC procedures and HVERSION-dependent options of architected PDC procedures,
all 32 return values (RET[0] through RET[31]) are HVERSION dependent.

1.1.6 Status

The status of PDC procedures is returned as a 32-bit two’s complement signed integer value in register GR28.

The rest of this section applies only to architected options of architected PDC procedures. For HVERSION-
dependent PDC procedures and HVERSION-dependent options of architected PDC procedures, all status values are
HVERSION dependent.

The following status values have the same meaning for all PDC procedures to which they apply:

Value Description

3 Call completed with a warning
0 OK

-1 Nonexistent procedure
-2 Nonexistent option
-3 Cannot complete call without error

-10 Invalid argument
-12 BUS_POW_WARN assertion detected

Note that status -1 is actually returned by PDCE_PROC, the entry point for all PDC procedures, rather than by the
individual PDC procedures themselves.

Positive status values (values from 1 to X’7FFFFFFF) are used to report advisory information whose meaning is
dependent on the procedure that was called.

The other negative status values (values from -4 to -9 and -11 to -X’80000000) are used for errors whose meaning
is dependent on the procedure that was called.

Status values other than those listed for a PDC procedure are reserved. Each PDC procedure may return only the
values specifically defined for it. Reserved values can be assigned architected meanings in the future. Therefore,
callers must treat the reserved negative values the same as -3 (Cannot complete call without error) and the reserved
positive values the same as 0 (OK).

Some status values are marked as REQUIRED. This means that all implementations of the PDC procedure are
required to detect the condition specified by the status value and to return the status value whenever the condition is
detected. Values are designated as required when necessary to support the functionality of the procedure.

Some status values are marked as OPTIONAL. This means that each implementation of the PDC procedure can
choose whether or not it will detect the condition specified by the status value.

Some status values are marked as CONDITIONAL. These values are accompanied by a specification of the cases
in which the condition must be detected and reported. There will be some PDC implementations for which those

Firmware Architecture, Ver 0.96 PDC Procedures 1-7

cases do not apply; they must not use the given value at all.

ENGINEERING NOTE

It is expected that those PDC implementations that are able to detect optional conditions will do so (and
will return the appropriate status value).

PDC implementations are encouraged to recognize as many specific error conditions as they can.

If an implementation cannot isolate an error to one of the more specific conditions, then it must report the error by
returning the general status value -3 (indicating that an indeterminate error was detected). If it cannot isolate one
of the specific advisory conditions, then it must return status 0 for "OK".

For all PDC procedures:

• All RET values are valid with a zero return status.

• All RET values are valid with any positive return status unless specified otherwise in the respective PDC
procedure description.

• All RET values are HVERSION dependent with a negative return status.

1.1.7 Interruptions

PDC procedures may optionally handle their own interruptions.

If PDC procedures do not handle their own interruptions, the execution of PDC procedures must not cause any
Group 3 or Group 4 interruptions. If PDC procedures do not handle their own interruptions, they must not write to
CR14 or to CR24 through CR31 during the procedure call.

If PDC procedures handle their own interruptions, they must write to CR 14 during the procedure call to point to
their interruption handlers. They may optionally modify the contents of CR 24-31 in accordance with their
interruption handlers. The interruption handlers must not modify those registers which the PDC procedures are not
allowed to modify.

PDC procedures are not required to recover if they receive an HPMC.

ENGINEERING NOTE

It is recommended that all PDC procedures be re-entrant to help them recover from an HPMC. The
probability of receiving an HPMC during a PDC procedure call is considered sufficiently low that PDC
procedures are not required to be re-entrant.

1.1.8 Powerfail Warning on Central Bus during PDC Call

In the event of a powerfail warning on the central bus while a PDC call is in progress, the procedure must always
return quickly enough so that the caller has the full powerfail budget available. PDC_CHASSIS and
PDC_POW_FAIL must complete all required actions before returning. All PDC procedures except
PDC_CHASSIS and PDC_POW_FAIL have two choices in the event of a powerfail warning on the central bus:

• complete all required actions before returning with the appropriate status

• terminate the call prematurely and return -12

A PDC procedure that returns -12 must be restartable, that is, it can be re-executed by the caller.

1-8 PDC Procedures Firmware Architecture, Ver 0.96

PROGRAMMING NOTE

The recommended calling sequence for restartable PDC procedures follows:

whil e (1) {
PSW I—bit ← 0;
status ← PDC_xxxxx (<arguments>);
if (status != —12)

break;
PSW I—bit ← 1;

}

Firmware Architecture, Ver 0.96 PDC Procedures 1-9

1.2 PDC Procedures
When PDCE_PROC is called, the index ARG0 specifies the procedure to be performed, as shown below:

ARG0 Mode Name Description

0 R Obsolete
1 HV PDC_POW_FAIL Prepare for powerfail
2 A PDC_CHASSIS Update chassis display
3 A PDC_PIM Access Processor Internal Memory

4 A PDC_MODEL Return processor model information
5 A PDC_CACHE Return cache and TLB parameters
6 A PDC_HPA Return processor’s HPA
7 A PDC_COPROC Return coprocessor configuration

8 A PDC_IODC Access a module’s IODC
9 A PDC_TOD Access Time-Of-Day clock
10 A PDC_STABLE Access Stable Storage
11 HV1 PDC_NVOLATILE Access Non-Volatile Memory

12 A PDC_ADD_VALID Validate address
13 R Obsolete
14 HV PDC_DEBUG Return entry point of debugger
15 HV3 PDC_INSTR Return PDCE_CHECK instruction

16-17 R Reserved
18 HV2 PDC_BLOCK_TLB Manage block TLB
19 HV4 PDC_TLB Manage hardware TLB miss handling

20-127 R Reserved
128-511 HV HVERSION dependent
> 511 R Reserved

R the procedure index is Reserved
A the procedure is required by the architecture in all PDC implementations
HV the existence of the procedure depends on the HVERSION of the processor

Notes:

1. Required for processors that provide Non-Volatile Memory; not implemented by other processors.

2. Required for processors that provide a block TLB; not implemented by other processors.

3. Required for processors that immediately enter the Interruption Vector Table upon an HPMC fault condition. Processors that
trigger PDCE_CHECK directly upon a machine check fault condition do not implement this procedure.

4. Required for processors with hardware TLB miss handlers; not implemented by other processors.

If an implementation provides a PDC procedure, then it must provide all defined options for that procedure, unless
explicitly noted to the contrary under the "Options" heading in the specifications that follow.

1-10 PDC Procedures Firmware Architecture, Ver 0.96

PDC_ADD_VALID (index 12)

Purpose: To determine the correct completion of a READ operation without risking an HPMC.

Arguments: Description ARG1 ARG2

Validate address 0 phaddr

Status: Value Description

Call completed with a warning.
An error of unspecified type occurred, but the call completed correctly.
OPTIONAL. The procedure need not report warning conditions.

3

Operation completed with a requestor bus error
REQUIRED.

2

Operation completed with a requestor bus error
REQUIRED.

1

OK (Operation completed without bus error)
The call completed normally and the procedure detected no error.
REQUIRED.

0

Nonexistent option
ARG1 did not correspond to an option provided by the procedure.
REQUIRED.

-2

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Invalid argument
An argument other than ARG0 or ARG1 was invalid.
OPTIONAL. The procedure need not check arguments for correctness.

-10

Assertion of BUS_POW_WARN signal detected
CONDITIONAL. Must be used if the procedure cannot satisfy the powerfail budget.

-12

Description: The "Validate address" option (ARG1=0) allows the caller to determine if a READ tophaddr
would generate a requestor bus error without risking an HPMC. PDC_ADD_VALID generates a
READ operation by issuing a load instruction tophaddr. Thephaddrargument is a word-aligned,
32-bit physical address.

PDC_ADD_VALID must return either 1 or 2 when detecting an HPMC fault condition caused by
a requestor bus error. PDC_ADD_VALID may return either status value, so the caller must check
for both values. It must also return one of these values when called for a deconfigured molule
which does not normally assert PATH_SLAVE_ACK in that state.

For processors that do not implement the full 32-bit address space, PDC_ADD_VALID must
perform a simple address comparison to check thatphaddr is within the implemented address
space. PDC_ADD_VALID must not try to determine the validity of a given physical address by
attempting a READ before this test is successful. Ifphaddris in the unimplemented portion of the
address space, PDC_ADD_VALID must return either 1 or 2.

If PDC_ADD_VALID detects an HPMC condition other than a requestor bus error, it is required
to return one of the following status values: 2, 1, 0, or -3. Status value 0 indicates that the HPMC
condition did not interfere with the completion of the READ operation. Status value -3 indicates
that the HPMC condition interfered with the completion of the READ operation (that is:
PDC_ADD_VALID could not determine that the read tophaddrcompleted). Status values 1 or 2
may optionally be used when an HPMC condition occurs other than a requestor bus error.

PDC_ADD_VALID may optionally enter its caller’s HPMC handler when detecting an HPMC
condition other than a requestor bus error.

Firmware Architecture, Ver 0.96 PDC Procedures 1-11

PDC_ADD_VALID (index 12) (continued)

SUPPORT NOTE

Implementations of PDC_ADD VALID are encouraged to use status values 0 or -3 for
HPMC condtions other than requestor bus errors. Support organizations will decide
whether or not an implementation is allowed to use the status values 2 or 1 for these
HPMC conditions. This decision is based on the supportability, reliability, and
availability requirements of the particular product.

PROGRAMMING NOTE

Calls to PDC_ADD_VALID may cause soft errors to be logged in the lower ports of
bus converters involved in the READ operation. Therefore, the caller may wish to
issue a CMD_CLEAR to any bus converter ports that may have been affected. Issuing
CMD_CLEAR is optional, but future error isolation is hampered by having bus
converter ports with residual soft errors logged during prior calls to
PDC_ADD_VALID.

1-12 PDC Procedures Firmware Architecture, Ver 0.96

PDC_BLOCK_TLB (index 18)

Purpose: To insert and purge block TLB entries and to return block TLB configuration parameters.

Arguments: Description ARG1 ARG2 ARG3 ARG4 ARG5 ARG6 ARG7

Return Parameters 0 R_addr R R R R R
Insert entry 1 st_v1 st_v2 st_p len entry_info slot
Purge entry 2 st_v1 st_v2 slot len R R
Purge all entries 3 R R R R R R

Returns: Description RET[0] RET[1] RET[2] RET[3]

Return Parameters min_size max_size fixed_range_info variable_range_info
Insert entry --- --- --- ---
Purge entry --- --- --- ---
Purge all entries --- --- --- ---

Status: Value Description

Call completed with a warning.
An error of unspecified type occurred, but the call completed correctly.
OPTIONAL. The procedure need not report warning conditions.

3

OK
The call completed normally and the procedure detected no error.
REQUIRED.

0

Nonexistent option
ARG1 did not correspond to an option provided by the procedure.
REQUIRED.

-2

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Invalid argument
An argument other than ARG0 or ARG1 was invalid.
OPTIONAL. The procedure need not check arguments for correctness.

-10

Assertion of BUS_POW_WARN signal detected
CONDITIONAL. Must be used if the procedure cannot satisfy the powerfail budget.

-12

Description: Block translations are presented to software by hardware in two ways. One specification, called a
fixed range slot, is of a block translation which can map an address range which is a power of two
and is aligned to the size of the address range being mapped by the translation. The other
specification, called avariable range slot, is a block translation which can map an address range
of a variable size and is aligned to a page.

The specification of both thefixed range slotsand thevariable range slotsprovide software only a
hint as to how the hardware is most likely going to provide the mapping. It is not guaranteed that
the address range specified by hardware, or requested by software will be mapped by an "Insert
entry" call.

PROGRAMMING NOTE

The number offixed range slotsand variable range slots, and the sizes of thefixed
range slotsare presented to software so that software may attempt tooptimize the
mapping of virtual addresses to absolute addresses by matching the sizes of virtual
address ranges with the sizes of the slots provided.

If an implementation provides N fixed range slots and M variable range slots, then the fixed range
slots are numbered 0..N-1 and the variable range slots are numbered N..N+M-1.

Firmware Architecture, Ver 0.96 PDC Procedures 1-13

PDC_BLOCK_TLB (index 18) (continued)

The "Return Parameters" option (ARG1=0) returns four parameters that characterize the
processor’s block TLB.

min_sizeandmax_sizeare the minimum and maximum sizes, in units of pages, of address ranges
that the fixed range slots map to physical addresses.min_sizeandmax_sizeare right-justified 20-
bit unsigned integers. The left-most 12 bits of the words in which these parameters are returned
are reserved.min_sizeandmax_sizemust be within the range 1 to (220 -1), and be a power of two.
The minimum size of an address range mapped by a variable range slot is 1 page whereas the
maximum is (220 - 1) pages.

fixed_range_infoandvariable_range_infogive the breakup of instruction, data, or combined slots
implemented as fixed range slots and variable range slots respectively. The format of the
fixed_range_infoword is the following:

R num_i num_d num_comb

0 7 8 15 16 23 24 31

The num_i and num_d fields give the number of fixed range slots which can be used for
instruction or data translations respectively. Thenum_combfield gives the number of fixed range
slots which may be used for either instruction or data translations. The instruction, data, and
combined fixed range slots, respectively, are numbered in ascending order of magnitude within
the range of fixed range slot numbers.

The format of thevariable_range_infoword is the same as the format of thefixed_range_info
word as shown below:

R num_i num_d num_comb

0 7 8 15 16 23 24 31

The num_i and num_dfields give the number of variable range slots which can be used for
instruction or data translations respectively. Thenum_combfield gives the number of variable
range slots which may be used for either instruction or data translations. The instruction, data,
and combined variable range slots, respectively, are numbered in ascending order of magnitude
within the range of variable range slot numbers.

For both the fixed range slots and variable range slots,num_d, num_i, andnum_combare 8-bit
unsigned integers. For both the fixed range slots and variable range slots,num_d, num_i, and
num_combmust all be within the range 0 to 255.

The "Insert entry" option (ARG1=1) sets up a block TLB entry.st_v1(most significant bits) and
st_v2(least significant 32 bits) give the starting virtual page number of the virtual address range
that is being mapped, andst_p gives the starting physical page number of the corresponding
absolute address range.

len is the length of the virtual address range, in multiples of pages, that is being mapped, while
slot specifies the block TLB slot number in which this translation is to be placed.len is a right-
justified 20-bit unsigned integer which specifies the length of the range in pages. The most
significant 12 bits of this argument are reserved.slot is a 8-bit unsigned integer and must be in the
range 0 to 255. The most significant 24 bits of this argument are reserved.

The entry_info argument gives protection information. The format of this argument is the
following:

R acc_rts u R access ID R

0 4 5 11 12 13 15 16 30 31

Theacc_rtsfield contains the access rights and theaccess IDfield contains the 15-bit access ID
for the translation. Theu field indicates whether this page of memory is cacheable. An 0 in this

1-14 PDC Procedures Firmware Architecture, Ver 0.96

PDC_BLOCK_TLB (index 18) (continued)

field indicates a cacheable page; a 1 in this field indicates an uncacheable page.

The R and T bits do not exist in the block TLB entries. The D-bit of the block TLB entries is
always considered to be a 1. If a block translation is inserted, and a translation for a portion of
this address range is inserted in the regular TLB with the D-bit 0, then taking a TLB dirty bit trap
on a store or semaphore instruction is HVERSION-dependent.

If a call to this PDC procedure to initialize a block TLB entry fails, then hardware must guarantee
that there is no observable effect on the block TLB.

Inserting a data translation which overlaps in its address range with another data translation in the
block TLB is an undefined operation (physical damage must not result). Similarly, inserting an
instruction translation which overlaps in its address range with another instruction translation in
the block TLB is an undefined operation (physical damage must not result).

When called with the "Insert entry" option, successful completion may not mean that the entire
address range specified in the call has been mapped in the block TLB. For both fixed range slots
and variable range slots, complete coverage of the address range specified is not guaranteed. Only
a portion of the address range specified may get mapped as a result of any "Insert entry" call. This
provides for flexibility of implementation of hardware.

Software may not, in general, rely on the existence of translations in the block TLB and hardware
may, in general, invalidate or remove block TLB entries at any time provided that forward
progress is assured. There are limited situations, however, in which software may rely on a
translation existing in the block TLB.

When an instruction takes a data memory protection trap, a data memory break trap, a TLB dirty
bit trap, a page reference trap, or a assist emulation trap, the associated data address translation
will remain in the block DTLB, and is termed the relied-upon translation. The translation will
continue to remain in the block data TLB for as long as software meets certain conditions which
are described in Chapter 3 of the Processor ACD.

Similarly, if the PSW Q-bit is 1, and is set to 0 by an RSM or MTSM instruction, the instruction
address translation used to fetch the RSM, or MTSM instruction will continue to remain in the
block ITLB, and will continue to do so as long as software meets certain conditions described in
Chapter 3 of the Processor ACD.

The "Purge entry" option (ARG1=2) purges a block TLB entry.st_v1(most significant bits) and
st_v2 (least significant 32 bits) give the starting virtual page number corresponding to the entry
that is to be purged.len specifies the length of the address range, in multiples of pages, of the
entry to be purged.slot identifies the translation to be purged by the slot number of the block
TLB. The format ofst_v1, st_v2, len,andslot are the same as in the "Insert entry" option. If the
starting virtual address, length of the mapping, or the slot number specified in the call do not
exactly match the corresponding parameters of an earlier "Insert entry" option call, then the result
of the call is HVERSION-dependent.

The "Purge all entries" option (ARG1=3) causes all the block TLB entries to be purged.

The effect of all the options of the PDC_BLOCK_TLB call is strictly local to a processor. The
"Return parameters" option only returns the block TLB parameters for the processor on which the
call was executed. All the other options only have local effects and therefore to achieve global
effects, the call must be made on all the processors.

Firmware Architecture, Ver 0.96 PDC Procedures 1-15

PDC_CACHE (index 5)

Purpose: To return the cache and TLB configuration parameters and to set the cache coherence state.

It is expected that the operating system will call PDC_CACHE during system configuration. This
enables the operating system to use the cache and TLB more efficiently.

Options: Option ARG1=1 must be implemented in Category B processors which issue non-coherent
operations instead of coherent operations during the execution of PDCE_CHECK and OS_HPMC.
See the PDCE_CHECK description in Section 2.2, PDC Entry Points.

Arguments: Description ARG1 ARG2 ARG3 ARG4 ARG5 ARG6 ARG7

Return parameters 0 R_addr HV R R R R
Set coherence state 1 R_addr Is_cst Ds_cst ITs_cst DTs_cst R
Return space-ID bits 2 R_addr R R R R R

Returns: Returns for ARG1=0:

RET[0] RET[1] RET[2] RET[3] RET[4] RET[5]
I_size I_conf I_base I_stride I_count I_loop

RET[6] RET[7] RET[8] RET[9] RET[10] RET[11]
D_size D_conf D_base D_stride D_count D_loop

RET[12] RET[13] RET[14] RET[15] RET[16] RET[17]
IT_size IT_conf IT_sp_base IT_sp_stride IT_sp_count IT_off_base

RET[18] RET[19] RET[20]
IT_off_stride IT_off_count IT_loop

RET[21] RET[22] RET[23] RET[24] RET[25] RET[26]
DT_size DT_conf DT_sp_base DT_sp_stride DT_sp_count DT_off_base

RET[27] RET[28] RET[29]
DT_off_stride DT_off_count DT_loop

Returns for ARG1=1:

RET[0] RET[1] RET[2] RET[3]
Ia_cst Da_cst ITa_cst DTa_cst

Returns for ARG1=2:

RET[0]
Space_bits

Status: Value Description

Call completed with a warning.
An error of unspecified type occurred, but the call completed correctly.
OPTIONAL. The procedure need not report warning conditions.

3

Error detected, partial use possible
Some test failed. The returned parameters are for the usable (as opposed to the
manufactured) configuration. Some coherence states not changed to requested value.
CONDITIONAL. Must be used if partial use after error is possible.

1

1-16 PDC Procedures Firmware Architecture, Ver 0.96

PDC_CACHE (index 5) (continued)

OK
The call completed normally and the procedure detected no error.
REQUIRED.

0

Nonexistent option
ARG1 did not correspond to an option provided by the procedure.
REQUIRED.

-2

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Invalid argument
An argument other than ARG0 or ARG1 was invalid.
OPTIONAL. The procedure need not check arguments for correctness.

-10

Assertion of BUS_POW_WARN signal detected
CONDITIONAL. Must be used if the procedure cannot satisfy the powerfail budget.

-12

Description: The "Return parameters" option (ARG1=0) returns 30 parameters that characterize the
processor’s caches and TLBs. All_size, _base, _stride, _count, and_loop parameters are 32-bit
unsigned integers. The returned parameters reflect the configuration determined to be usable by
optional tests run during or prior to the PDC_CACHE call.

The D-cache parameters (RET[6] - RET[11]) are not necessarily duplicates of the I-cache
parameters (RET[0] - RET[5]). As well, The DTLB parameters (RET[21] - RET[29]) are not
necessarily duplicates of the ITLB parameters (RET[12] - RET[20]). Software must read each set
of parameters.

If a machine check causes caches or TLBs to be reconfigured, PDC_CACHE must continue to
return the same cache and TLB parameters.

Data Cache Parameters

D_sizespecifies the size of the D-cache in bytes, exclusive of tags and other descriptors. It is
calculated as the effective size of all the levels of the data cache and the combined cache, when
the cache system is fully configured (error conditions may reduce the size of an operational
cache).

If D_sizeis 0, then there is no D-cache andD_conf, D_base, D_stride, D_count, andD_loopmust
also be 0.

D_confspecifies the configuration of the D-cache, in the following format:

alias block line R wt f-sel cst R HV

0 3 4 7 8 10 11 12 13 14 15 16 18 19 29 30 31

The alias field specifies the aliasing boundaries for virtual addresses. The values returned are
defined as follows:

Value Description

0 Unknown1

1 4 KB
2 8 KB
3 16 KB
4 32 KB
5 64 KB

Firmware Architecture, Ver 0.96 PDC Procedures 1-17

PDC_CACHE (index 5) (continued)

6 128KB
7 256 KB
8 512 KB
9 1 MB
10 2 MB
11 4 MB
12 8 MB
13 16 MB

14-15 Reserved

1. The aliasing boundary is unknown and may be greater than 16MB.

The line field specifies the maximum amount of data that will be written back to memory as the
result of a store instruction, expressed as a multiple of 16 bytes. This data written to memory is
aligned to an address which is a multiple of the line size. The allowed values ofline are 0 (if no
cache), 1, 2, and 4.

PROGRAMMING NOTE

Software can use the value of the D-cache line size in assigning memory addresses that
can be modified by other modules. To avoid generating indeterminate data, other
modules should be prevented from modifying a memory location contained in a D-
cache line. It is also possible to use semaphores to control the access to memory that is
shared by a processor and another module.

For alignment purposes, software can always assume a value of 64 bytes as the D-cache
line size, because it is the maximum value allowed by the architecture.

The value ofblockcan be used to determine the most efficient stride for use by software to flush or
purge a range of addresses. The value ofblock is 0 only if the D-cache is not implemented. The
value of this stride is given by 2block−1 * line * 16. A flush or purge of an address will flush or
purge the aligned data block of size 2block−1 * line * 16. (The entire data block will be ejected
from the D-cache; only the lines that are dirty will be written to memory.)

PROGRAMMING NOTE

Smaller address strides can also be used in flushing or purging. In fact, the value 16
can always be assumed for the address stride for flush and purge instructions.

The value ofwt is 0 if the D-cache is a write-back cache, and is 1 if the D-cache is a write-through
cache.

If this bit is a 1, it means that any processor store (or semaphore) instruction is architecturally
equivalent to the instruction sequence shown below. Any cache states that the cache can end up
in as a result of the equivalent instruction sequence are legal.

store (or ldcw);
flush;
sync;
load;

ENGINEERING NOTE

For a write-back cache, it is typical to have one ’dirty’ bit for each line in the D-cache.
The ’dirty’ bit is set if the line contains data that was stored to but not written to
memory. After a store instruction writes into any part of a D-cache line (making it

1-18 PDC Procedures Firmware Architecture, Ver 0.96

PDC_CACHE (index 5) (continued)

dirty), the entire line will be written to memory before it is replaced or removed.

PROGRAMMING NOTE

If a processor has a write-through D-cache, the cache contents do not need to be flushed
before DMA is initiated nor during powerfail preparation, but a SYNC instruction is
still necessary.

The f-sel field tells software how to flush a range of addresses from the cache and has the
following meaning.

Value Description

Both FIC and FDC must be used00
Only need FDC01
Only need FIC10
Either FIC or FDC may be used11

However, if the page was accessed either as instructions only or as data only, then either a FIC
loop alone (or the FICE loop), or a FDC loop alone (or the FDCE loop) may be used to flush a
range of addresses (or the entire cache). In multiprocessor systems, software must look at all the
f-sel fields and flush in such a way (either one of the set of flushes, or both) that the address range
is flushed on all the processors. Thef-selfields of both D_conf and I_conf must be identical.

Independent of thef-selfield, software has to execute both the FDCE and the FICE loops to flush
either the I-cache, the D-cache, or the entire cache system. However, if an address range has been
accessed either as instructions only, or as data only, then either the FICE loop, or the FDCE loop
alone may be used to flush the address range.

A value of 0 in thecstfield means that the D-cache is not issuing coherent operations; a value of 1
means that the D-cache is issuing coherent operations. Values 2 through 7 are reserved. Thecst
field must always be 0 on category A processors.

The four parametersD_base, D_stride, D_count, andD_loop are provided by PDC_CACHE for
use by software that desires to flush the entire D-cache in an efficient manner. The meaning of
these four parameters will be described first from the perspective of the software that uses them
and then in terms of the responsibilities of the PDC implementation that must provide them.

The four parameters have meaning only within the context of the given procedure which flushes
the entire D-cache. The caller of PDC_CACHE may not assume any other meaning.

Perspective of the PDC_CACHE caller

It is always possible to flush the entire D-cache by using the FDC instruction for every physical
address from 0 to the largest possible memory address (X’EEFFFFFF) and for every virtual
address from 0 to the largest possible virtual address. Software can accomplish this flushing more
efficiently by using the FDCE instruction, but only if it follows all the rules below:

• Software must use an equivalent of the C routine given below (whereD_base, D_count,
D_loop, andD_strideare the parameters returned by PDC_CACHE).

unsigned int addr,count,loop,D_base,D_count,D_loop,D_stride;
addr ← D_base;
for (count ← 0; count < D_count; count++) {

for (loop ← 0; loop < D_loop; loop++)
FDCE(addr);

addr ← addr + D_stride;
}

A routine is considered equivalent to the C routine if it generates the same sequence of FDCE

Firmware Architecture, Ver 0.96 PDC Procedures 1-19

PDC_CACHE (index 5) (continued)

instructions.

• During the execution of this loop (including trap handling), memory management instructions,
loads, stores, and load and clear word instructions must not be executed.

• Software must hold the space bits constant during the execution of the entire loop, even if the
addresses generated by the loop differ in the two most significant bits of the offset.

• All the FDCE instructions in the data cache flush loop must execute with the same value in the
PSW D-bit.

The parameters can also be used to optimize the flushing of a range of addresses. The following
programming note demonstrates this use.

PROGRAMMING NOTE

The following routine flushes the range of addresses between (space, off_base) and
(space, off_bound):

unsigned int off_base, off_bound, offset;
for (offset=off_base; offset<=off_bound; offset+=pow(2,block—1)*line*16)

FDC(space, offset);
FDC(space, off_bound); /*this is required if

the starting address is not
block—aligned*/

This routine must execute with the PSW D-bit equal to 1 if the range to be flushed is a
virtual address range, and with the D-bit equal to 0 if the range is a physical range. In a
multiprocessor system where the individual processors flush different amounts of the
cache on a flush, the minimum value of the product 2block−1*line*16 should be used in
the address range cache flush loop.

Implementors are encouraged to report the product 2block−1*line*16 to be greater than
or equal to the coherence size of the system because software that is flushing a range of
addresses would perform redundant flushes (hardware is built to flush a block of the
cache = coherence size upon each flush, but software is issuing flushes on a smaller
granularity).

Responsibilities of the PDC_CACHE implementation

The designers that specified how the FDCE instruction is implemented and how the D-cache is
organized are responsible for identifying values of the four parameters so as to fulfill the promise
to software made above.

Space register bits may be used in the hash used to index cache. Although space bits are not
varied in the cache flush routine, the entire cache must still be flushed by executing the loop.

The cache flush loop must also work in the presence of coherent cache operations (coherence
checks, and broadcast FIC, FDC, PDC, PDTLB, and PITLB operations).

ENGINEERING NOTE

This is the model of cache organization used in defining the C routine. It is included to
guide cache designers in identifying values for the four parameters. This is not
intended to restrict designers in any way. For example, it is allowed for a processor to
flush the entire cache in response to a single FDCE instruction.

D_baseis used to establish the starting address. It will usually be possible to set it to 0
with no loss of generality.

1-20 PDC Procedures Firmware Architecture, Ver 0.96

PDC_CACHE (index 5) (continued)

D_stridewill usually be the size of a cache line in bytes. Thus, one would expect its
value to be theD_conf[line] field multiplied by 16.

D_countwill usually be the number of lines in the cache.

D_loop is intended for set-associative caches. It is used to force the FDCE instruction
to be executed multiple times with the same address. Note that whenD_loop = 1,
software can optimize out the inner loop of the C routine. So when there are multiple
sets of parameters that all get the flushing job done, the one withD_loop = 1 may be
most efficient. Implementations that flush all elements of an associative set with a
single FDCE instruction will probably useD_loop= 1.

Instruction Cache Parameters

I_size specifies the size of the I-cache in bytes, exclusive of tags and other descriptors. It is
calculated as the effective size of all the levels of the instruction cache and the combined cache,
when the cache system is fully configured (error conditions may reduce the size of an operational
cache).

If I_sizeis 0, then there is no I-cache andI_conf, I_base, I_stride, I_count, andI_loop must also
be 0.

I_confspecifies the configuration of the I-cache, in the following format:

alias block line R f-sel cst R HV

0 3 4 7 8 10 11 13 14 15 16 18 19 29 30 31

The value ofline has no meaning by itself, because instructions cannot become dirty and be
written back to memory. The most efficient stride for flushing a range of addresses from the I-
cache is given by 2block−1 * line * 16. The value ofblock is 0 only if the I-cache is not
implemented. Thef-sel field of I_conf must be identical to that ofD_confword. Thealias field
of I_conf returns the offset aliasing boundary for virtual addresses as explained in theD_conf
description, but may have a different value if the instructions and data caches do not have the
same aliasing boundary.

A value of 0 in thecstfield means that the I-cache is not issuing coherent operations; a value of 1
means that the I-cache is issuing coherent operations. Values 2 through 7 are reserved.

The four parametersI_base, I_stride, I_count, andI_loop are provided by PDC_CACHE for use
by software that desires to flush the entire I-cache in an efficient manner. The four parameters
have meaning only within the context of the given procedure which flushes the entire I-cache.
The caller of PDC_CACHE may not assume any other meaning.

The four parametersI_base, I_stride, I_count, and I_loop are used in a procedure which is
guaranteed to flush the entire I-cache. Software can accomplish this flushing by using the FICE
instruction, but only if it follows the rules below:

• Software must use an equivalent of the C routine given below (whereI_base, I_count, I_loop,
andI_strideare the parameters returned by PDC_CACHE).

unsigned int addr,count,loop,I_base,I_count,I_loop,I_stride;
addr ← I_base;
for (count ← 0; count < I_count; count++) {

for (loop ← 0; loop < I_loop; loop++)
FICE(addr);

addr ← addr + I_stride;
}

A routine is considered equivalent to the C routine if it generates the same sequence of FICE
instructions.

Firmware Architecture, Ver 0.96 PDC Procedures 1-21

PDC_CACHE (index 5) (continued)

• Software need not insure that there are no extraneous interactions with the I-cache while the
routine is being executed. It would not be possible to meet such a condition, because the code
is executing out of the I-cache. During the execution of this loop (including trap handling),
memory management instructions must not be executed.

• Software must hold the space bits constant during the execution of the entire loop, even if the
addresses generated by the loop cross quadrant boundaries.

• All the FICE instructions in the loop must execute with the same value in the PSW D- and C-
bits.

Space register bits may be used in the hash used to index cache. Although there is no variation of
space in the cache flush routine, the entire cache must still be flushed by executing the loop.

The cache flush loop must also work in the presence of coherent cache operations (coherence
checks, and broadcast FIC, FDC, PDC, PDTLB, and PITLB operations).

Instruction TLB Parameters

IT_sizespecifies the maximum number of entries in the instruction TLB which is calculated as the
effective size of all the levels of the ITLB and combined TLBs in a fully configured situation (no
entries have been locked out, or deconfigured).

If IT_size is 0, then there is no instruction TLB andIT_conf, IT_sp_base, IT_sp_stride,
IT_sp_count, IT_off_base, IT_off_stride, IT_off_count, andIT_loopmust also be 0.

IT_confspecifies the configuration of the instruction TLB, as follows:

R p-sel HV page cst aid sr HV

0 11 12 13 14 15 16 18 19 23 24 29 30 31

Thep-selfield tells software how to purge the TLBs and has the following meaning:

Value Description

Both PITLB and PDTLB must be used00
Only need PDTLB01
Only need PITLB10
Either PITLB or PDTLB may be used11

In multiprocessor systems, software must look at all thep-sel fields and purge in such a way
(either one of the set of purges, or both) that the translations are purged on all the processors.

The architectural page size is 4 Kbytes. Some machines, however, implemented 2 Kbyte pages.
The pagefield can be used to identify 2 Kbyte page machines.page is normally 1, but is 0 for
machines with 2 Kbyte pages.

PROGRAMMING NOTE

Software should be aware that some Precision systems have a 2-Kbyte page size and a
2-Kbyte alignment restriction.

A value of 0 in thecst field means that the ITLB is not issuing coherent operations; a value of 1
means that the TLB is issuing coherent operations. Values 2 through 7 are reserved.

The width of the access ids of the processor is encoded in theaid field. The width is 15 +aid.
The width of the space registers is encoded in thesr field. If the processor is Level 2, thesr field
specifies the number of additional spare register bits beyond 32 which are available. Thesr field
is reserved for non Level 2 processors, and the width of the space registers is determined directly

1-22 PDC Procedures Firmware Architecture, Ver 0.96

PDC_CACHE (index 5) (continued)

by the Level (0, 16, or 24 for Level 0, Level 1, or Level 1.5, respectively)

The seven parametersIT_sp_base, IT_sp_stride, IT_sp_count, IT_off_base, IT_off_stride,
IT_off_count, and IT_loop are used in a procedure which is guaranteed to purge the entire
instruction TLB. The parameters make the purging procedure work but have no other meaning.
The procedure must be run in an environment in which no extraneous TLB interactions can occur
(which can be assured if the routine runs with the PSW C- and D-bits=0 and with external
interrupts masked). The following C routine (using the values returned by PDC_CACHE) is
guaranteed to purge the entire instruction TLB:

unsigned int space, sp_count, IT_sp_base, IT_sp_stride, IT_sp_count,
offset, off_count, IT_off_base, IT_off_stride, IT_off_count,
loop, IT_loop;

space ← IT_sp_base;
for (sp_count ← 0; sp_count < IT_sp_count; sp_count++) {

offset ← IT_off_base;
for (off_count ← 0; off_count < IT_off_count; off_count++) {

for (loop ← 0; loop < IT_loop; loop++)
PITLBE(space, offset);

offset ← offset + IT_off_stride;
}
space ← space + IT_sp_stride;

}

ENGINEERING NOTE

This is the model of TLB organization used in defining the C routine. It is included to
guide TLB designers in identifying values for the seven parameters. The model
assumes that a TLB entry is accessed by hashing together portions of the space and
offset of the address. The two outer loops are used to generate the combinations of
spaces and offsets that amongst them hash to every entry in the TLB.

IT_sp_baseis used to establish the starting space. It will usually be possible to set it to
0 with no loss of generality.

IT_sp_strideis the increment to the space part of the address. If the hashing function
does not use the N least significant bits of the space, then IT_sp_stride would be 2N.
This rule of thumb remains valid even if the hashing function does use the least
significant bits of the space (N = 0 impliesIT_sp_stride= 1).

IT_sp_countis the number of space values that must be generated. If the hashing
function uses M contiguous bits in the space, thenIT_sp_countneed not be greater than
2M. This rule of thumb remains valid even if the hashing function does not use the
space at all (M = 0 impliesIT_sp_count= 1).

IT_off_baseis used to establish the starting offset. It will usually be possible to set it to
0 with no loss of generality.

IT_off_strideis the increment to the offset part of the address. If the hashing function
does not use the P least significant bits of the offset, thenIT_off_stridewould be 2P.

IT_off_count is the number of offset values that must be generated. If the hashing
function uses Q contiguous bits in the offset,IT_off_countneed not exceed 2Q.

IT_loop is intended for set-associative TLBs. It is used to force the PITLBE instruction
to be executed multiple times with the same address. Note that, whenIT_loop = 1,
software can optimize out the innermost loop of the C routine. So when there are
multiple sets of parameters that all get the purging job done, the one withIT_loop = 1
may be most efficient.

Firmware Architecture, Ver 0.96 PDC Procedures 1-23

PDC_CACHE (index 5) (continued)

Data TLB Parameters

DT_sizespecifies the maximum number of entries in the data TLB which is calculated as the
effective size of all the levels of the DTLB and combined TLBs in a fully configured situation (no
entries have been locked out or deconfigured).

If DT_sizeis 0, then there is no data TLB andDT_conf, DT_sp_base, DT_sp_stride, DT_sp_count,
DT_off_base, DT_off_stride, DT_off_count, andDT_loopmust also be 0.

DT_confspecifies the configuration of the data TLB, as follows:

R p-sel HV u cst R HV

0 11 12 13 14 15 16 18 19 29 30 31

The meanings of the fields withinDT_confare analogous to the corresponding fields ofIT_conf
except for bit 15, which is theu field instead of thepagefield, and bits 19-29 which are Reserved.
A 1 in the u field indicates that the processor implements the TLB u-bit, and a 0 indicates that it
does not.

The seven parametersDT_sp_base, DT_sp_stride, DT_sp_count, DT_off_base, DT_off_stride,
DT_off_count, and DT_loop can be used to purge the entire data TLB. The C routine which
purges the entire data TLB is analogous to the one given to purge the entire instruction TLB.

The "Set coherence state" option (ARG1=1) attempts to set the current coherence state in the I-
and D-caches and TLBs. The following is the format forIs_cst, Ds_cst, ITs_cst, andDTs_cst:

R cst R

0 15 16 18 19 31

Thecstfield is the coherence state desired for the I-cache, D-cache, ITLB, and DTLB. A value of
0 in thecst field means that the cache/TLB do not issue coherent operations; a value of 1 means
that the cache/TLB do issue coherent operations. Values 2 through 7 are reserved.

Return parametersIa_cst, Da_cst, ITa_cst, andDTa_cstindicate the actual coherence state. The
following is the format for Ia_cst, Da_cst, ITa_cst, and DTa_cst:

R cst R

0 15 16 18 19 31

If a return value differs from its corresponding argument, then the processor is unable to change to
the desired state, and the return value is the current, unchanged state.

1-24 PDC Procedures Firmware Architecture, Ver 0.96

PDC_CACHE (index 5) (continued)

The "Return space-ID bits" option (ARG1=2) returns whether space-ID hashing is turned on, and
which bits are used in the hashing algorithm. If space-ID hashing is not turned on, a 0 will be
returned in theSpace_bitsparameter. If space-ID hashing is turned on, the return will be non-
zero, and will be formatted as follows:

R Bits_Used R

0 3 4 15 16 31

Firmware Architecture, Ver 0.96 PDC Procedures 1-25

PDC_CHASSIS (index 2)

Purpose: To update the chassis display and return chassis warnings.

Arguments: Description ARG1 ARG2 ARG3

Update chassis display 0 data HV
Return chassis warnings 1 R_addr HV
Update display and return warnings 2 R_addr data

Returns: Description RET[0]

Update chassis display ---
Return chassis warnings warn
Update display and return warnings warn

Status: Value Description

Call completed with a warning.
An error of unspecified type occurred, but the call completed correctly.
OPTIONAL. The procedure need not report warning conditions.

3

OK
The call completed normally and the procedure detected no error.
REQUIRED.

0

Nonexistent option
ARG1 did not correspond to an option provided by the procedure.
REQUIRED.

-2

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Invalid argument
An argument other than ARG0 or ARG1 was invalid.
OPTIONAL. The procedure need not check arguments for correctness.

-10

Description: Any processor may execute PDC_CHASSIS to update the chassis display or read the chassis
warnings.

The actual number of chassis displays and chassis warnings that must be implemented, and which
processors must execute PDC_CHASSIS at what frequencies is defined by theChassis I/O
Standard.

The number of chassis displays, and the mechanism by which they are shared in a multiprocessor
system is defined by theChassis I/O Standard.

The procedure is best suited to a display with four hex digits, but the display codes are designed to
present the maximum error information for each of the display options.

The "Update chassis display" option (ARG1=0) displays new data and system state on the chassis
display.

The "Return chassis warnings" option (ARG1=1) returns warnings pertaining to the fans,
batteries, and temperature.

The "Update display and return warnings" option (ARG1=2) updates the display and returns
the warnings.

1-26 PDC Procedures Firmware Architecture, Ver 0.96

PDC_CHASSIS (index 2) (continued)

Thedataargument specifies the contents of the display, as follows:

R sysstat blank D0 D1 D2 D3

0 11 12 14 15 16 19 20 23 24 27 28 31

The sysstatfield identifies which of the eight states the system is currently in. The states are
defined as follows:

sysstat System State

000 Off
001 Fault
010 Test
011 Initialize
100 Shutdown
101 Warning
110 Run
111 All On

The values of D0, D1, D2, and D3 are the 4-bit numbers representing the four hex digits on the
display. The value generated on the display is the hex representation of these digits, the leftmost
digit is D0 and the rightmost is D3.

If the blankbit is set, the display should be made blank, if possible, regardless of the values of D0,
D1, D2, and D3.

The return parameterwarnhas the following format:

r_power R b_low t_low t_mid

0 7 8 28 29 30 31

When r_power is 0, there is no failure of any redundant chassis component (such as a fan or
power supply). A nonzero value ofr_power identifies a failed redundant chassis component; the
encoding of the nonzero values is HVERSION dependent.

The value ofb_low= 0 implies that the battery is good (or that this feature is not provided). The
value of b_low = 1 implies that the battery is low, so memory may not be preserved during a
power failure.

The value oft_low = 1 if the product temperature has exceeded the Temp_Low threshold.

The value oft_mid= 1 if the product temperature has exceeded the Temp_Mid threshold.

Processors which do not provide warning detection must return 0 forwarn.

Firmware Architecture, Ver 0.96 PDC Procedures 1-27

PDC_COPROC (index 7)

Purpose: To identify the coprocessors attached to the processor.

Arguments: Description ARG1 ARG2

Return coprocessor configuration 0 R_addr

Returns: Description RET[0] RET[1]

Return coprocessor configuration ccr_functional ccr_present

Status: Value Description

Call completed with a warning.
An error of unspecified type occurred, but the call completed correctly.
OPTIONAL. The procedure need not report warning conditions.

3

Error detected, partial use possible
This status must be returned ifccr_functionaldoes not equalccr_present.
CONDITIONAL. Must be used if coprocessors are tested during the call.

1

OK
The call completed normally and the procedure detected no error.
REQUIRED.

0

Nonexistent option
ARG1 did not correspond to an option provided by the procedure.
REQUIRED.

-2

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Invalid argument
An argument other than ARG0 or ARG1 was invalid.
OPTIONAL. The procedure need not check arguments for correctness.

-10

Assertion of BUS_POW_WARN signal detected
CONDITIONAL. Must be used if the procedure cannot satisfy the powerfail budget.

-12

Description: The "Return coprocessor configuration" option (ARG1=0) returns parameters which describe
the presence and status of the coprocessors attached to the processor. Following PDC_COPROC,
the state of all coprocessors is HVERSION dependent.

ENGINEERING NOTE

The coprocessors may be optionally tested during the call. It is recommended that the
test be limited to a simple GO/NO GO test.

ccr_functionalspecifies which coprocessors are present and functional. A set bit indicates that
the corresponding coprocessor is both present and, if tested, has passed the test. The format of
ccr_functional is the same as the CCR (CR10). Ifccr_functional is moved into the CCR, each
present and functional coprocessor is enabled.

ccr_presentspecifies which coprocessors are present. A set bit indicates that the corresponding
coprocessor is present. If the bit is set inccr_presentand cleared inccr_functional, the
coprocessor is present but has failed a functional test. The format ofccr_presentis the same as
the CCR (CR10).

The operating system must call PDC_COPROC during boot and powerfail recovery to determine
which coprocessors are present and functional. A state restore sequence of a valid coprocessor
state must be used after the PDC_COPROC call to enable use by the OS.

If the coprocessors require initialization upon power on, and PDCE_RESET does not perform that
initialization, then the coprocessors must be initialized by PDC_COPROC.

1-28 PDC Procedures Firmware Architecture, Ver 0.96

PDC_DEBUG (index 14)

Purpose: To return the address of a PDC-based debugger.

Arguments: Description ARG1 ARG2

Return entry point of debugger 0 R_addr

Returns: Description RET[0]

Return entry point of debugger debug_addr

Status: Value Description

Call completed with a warning.
An error of unspecified type occurred, but the call completed correctly.
OPTIONAL. The procedure need not report warning conditions.

3

OK
The call completed normally and the procedure detected no error.
REQUIRED.

0

Nonexistent option
ARG1 did not correspond to an option provided by the procedure.
REQUIRED.

-2

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Invalid argument
An argument other than ARG0 or ARG1 was invalid.
OPTIONAL. The procedure need not check arguments for correctness.

-10

Assertion of BUS_POW_WARN signal detected
CONDITIONAL. Must be used if the procedure cannot satisfy the powerfail budget.

-12

Description: The "Return entry point of debugger" option (ARG1=0) returns the address of the debugger in
thedebug_addrparameter, which is a 32-bit unsigned word-aligned integer.

The debugger can be called directly, or its address can be stored in MEM_TOC to allow it to be
invoked by a directed reset. If accessed through TOC, then MEM_TOC_LEN must be set to 0.
Since the debugger can be invoked at any time, no parameters are passed to it; the debugger must
use memory below MEM_FREE if it needs a stack or other buffers. The debugger may allow the
user to attempt to return to the caller through GR2; if this occurs, the debugger must adhere to the
Calling Convention and return 0. The debugger normally exits to PDC (at the "Enter boot path or
command" prompt), allowing the user to invoke ISL, the operating system, or a system dump
utility.

PROGRAMMING NOTE

Although the debugger user interface is not architected, it is strongly recommended to
make the interface compatible with SIM/RDB. This allows better supportability across
the product range. Implementors who wish to design versions with limited features or
enhanced features may do so. This results in subsets or supersets of the usual
commands without making them incompatible. As an example refer to theLDB
External Reference Specification.

Firmware Architecture, Ver 0.96 PDC Procedures 1-29

PDC_HPA (index 6)

Purpose: To return the hard physical address of the processor and to indicate which modules on the bus
exist on the same board as the processor.

Options: Option ARG1=1 is required for processors on a bus which implements On Line Replacement
(OLR). Option ARG1=1 is HVERSION dependent for other processors.

Arguments: Description ARG1 ARG2 ARG3 ARG4 ARG5 ARG6 ARG7

Return processor HPA 0 R_addr HV --- --- --- ---
Return modules 1 R_addr R R R R R

Returns: Description RET[0] RET[1]

Return processor HPA hpa R
Return modules mods_0 mods_1

Status: Value Description

Call completed with a warning.
An error of unspecified type occurred, but the call completed correctly.
OPTIONAL. The procedure need not report warning conditions.

3

OK
The call completed normally and the procedure detected no error.
REQUIRED.

0

Nonexistent option
ARG1 did not correspond to an option provided by the procedure.
REQUIRED.

-2

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Invalid argument
An argument other than ARG0 or ARG1 was invalid.
OPTIONAL. The procedure need not check arguments for correctness.

-10

Assertion of BUS_POW_WARN signal detected
CONDITIONAL. Must be used if the procedure cannot satisfy the powerfail budget.

-12

Description: The "Return processor HPA" option (ARG1=0) returns the hard physical address of the
processor.

The return parameterhpacontains the processor’s HPA, in the following format:

1111 flex fixed R

0 3 4 13 14 19 20 31

The "Return modules" option (ARG1=1) returns two 32-bit bitmasks indicating which modules
on the bus exist on the same board as the processor. A set bit indicates that the module is on the
same board while a clear bit indicates it is not. Bits 0-31 inmods_0correspond to modules 0-31.
Bits 0-31 in mods_1correspond to modules 32-63. If this option is not implemented, software
must assume that all modules on the bus are implemented on the processor board.

1-30 PDC Procedures Firmware Architecture, Ver 0.96

PDC_INSTR (index 15)

Purpose: To return an instruction that invokes PDCE_CHECK.

Arguments: Description ARG1 ARG2

Return PDCE_CHECK instruction 0 R_addr

Returns: Description RET[0]

Return PDCE_CHECK instruction instr

Status: Value Description

Call completed with a warning.
An error of unspecified type occurred, but the call completed correctly.
OPTIONAL. The procedure need not report warning conditions.

3

OK
The call completed normally and the procedure detected no error.
REQUIRED.

0

Nonexistent option
ARG1 did not correspond to an option provided by the procedure.
REQUIRED.

-2

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Invalid argument
An argument other than ARG0 or ARG1 was invalid.
OPTIONAL. The procedure need not check arguments for correctness.

-10

Assertion of BUS_POW_WARN signal detected
CONDITIONAL. Must be used if the procedure cannot satisfy the powerfail budget.

-12

Description: The "Return PDCE_CHECK instruction " option (ARG1=0) returnsinstr, an instruction that
invokes PDCE_CHECK, the PDC entry point that prepares for machine checks. If the procedure
returns status 0, theninstr must be inserted in the first word of the HPMC entry in the Interruption
Vector Table (instr inserted at IVA+32).

PROGRAMMING NOTE

The algorithm below establishs a new HPMC handler after PDC boot code launches
software. When software is launched, the IVA (CR14) is established by PDC such that
IVA+32 points to a valid HPMC handler.

1. Insert a null instruction in the first word of the HPMC entry in the new
Interruption Vector Table. (IVT) The second word is the start of the HPMC
handler. (The IVA does not point to this table so that HPMCs can be handled by
PDC’s HPMC handler.)

2. Call PDC_INSTR. If this processor immediately enters the IVT upon an HPMC
fault, insertinstr, the special instruction that invokes PDCE_CHECK to prepare
for the machine check, in place of the null instruction at IVA+32. However, if
this processor triggers PDCE_CHECK in hardware, the call returns -1
(Nonexistent procedure). In this case, leave the null instruction.

3. Establish the correct checksum to complete the HPMC entry of the new
Interruption Vector Table.

4. Modify the IVA to point to the new Interruption Vector Table.

Firmware Architecture, Ver 0.96 PDC Procedures 1-31

PDC_IODC (index 8)

Purpose: To obtain the I/O-dependent code for a module and to emulate architected functionality in
processor-dependent memory modules.

Options: Options ARG1=2 and ARG1=4 are defined for use with processor-dependent memory modules.
Processors that do not support processor-dependent memory do not provide these options. Option
ARG1=5 is defined for use with interleaved processor-dependent memory. Processors that do not
support interleaved memory do not provide this option.

Arguments: Description ARG1 ARG2 ARG3 ARG4 ARG5 ARG6

Get entry point 0 R_addr hpa index memaddr count
Nondestructive init 2 R_addr hpa spa --- ---
Return and clear errors 4 R_addr hpa spa --- ---
Identify primary 5 R_addr hpa --- --- ---

Returns: Description RET[0] RET[1] RET[2] RET[3]

Get entry point actcnt R R R
Nondestructive init stat max_spa max_mem R
Return and clear errors stat resp info req
Identify primary primary_hpa R R R

Status: Value Description

Call completed with a warning.
An error of unspecified type occurred, but the call completed correctly.
OPTIONAL. The procedure need not report warning conditions.

3

Unrecoverable memory module error (some memory usable)
A memory error was detected during initialization but some memory is still usable.
Returned only by option ARG1=2.
CONDITIONAL. Must be used if memory is partially configurable after an error.

2

Recoverable memory module error
The call completed normally and the returned results are valid. The procedure
encountered an error which it was able to correct completely. Returned only by option
ARG1=2.
CONDITIONAL. Must be used if the implementation performs error recovery.

1

OK
The call completed normally and the procedure detected no error.
REQUIRED.

0

Nonexistent option
ARG1 did not correspond to an option provided by the procedure.
REQUIRED.

-2

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Operation completed with requestor bus error
The processor detected a requestor bus error during the READ operation to the
IO_DC_DATA register of the target HPA (ARG3). The caller may assume that no IODC
exists at the target HPA.
REQUIRED. Returned only by option ARG1 = 0.

-4

Valid IODC for this module, but invalid index specified in ARG4
REQUIRED. Returned only by option ARG1=0.

-5

Requested IODC exceedscountbytes
REQUIRED. Returned only by option ARG1=0.

-6

1-32 PDC Procedures Firmware Architecture, Ver 0.96

PDC_IODC (index 8) (continued)

Invalid argument
An argument other than ARG0 or ARG1 was invalid.
OPTIONAL. The procedure need not check arguments for correctness.

-10

Assertion of BUS_POW_WARN signal detected
CONDITIONAL. Must be used if the procedure cannot satisfy the powerfail budget.

-12

IODC checksum error
REQUIRED. Returned only by option ARG1=0.

-18

Satellite not associated with any primary
The target HPA (ARG3) is a satellite which is not configured to be part of any interleave
group and thus is not associated with any primary. For example, a faulty satellite might
not be configured.
REQUIRED. Returned only by option ARG1=5.

-19

Description: The "Get entry point" option (ARG1=0) provides access to the IODC of the module specified by
thehpaargument. Software is required to use the option for all IODC access, rather than read the
IODC directly. The caller allocates a buffer in memory into which the option deposits the
requested IODC. The buffer is at memory locationmemaddrand iscount bytes in length. The
value of memaddrmust be word aligned;count is an unsigned 32-bit integer and must be a
multiple of four. The entry point to get is selected byindex, which is an unsigned integer in the
range [0..255]. The return parameteractcnt is the actual number of bytes in the entry point
selected.actcnt is an unsigned 32-bit integer and must be a multiple of four.

The IODC data bytes are returned in the following format in thememaddrbuffer:

byte
0

byte
1

byte
2

byte
3

byte
actcnt-4

byte
actcnt-3

byte
actcnt-2

byte
actcnt-1

memaddr

The "Get entry point" option treatsindex=0 as a special case. First,index=0 does not return IODC
entry point 0, but instead returns the first 16 bytes of the module’s IODC. Second, RET[0] is
HVERSION dependent because modules can provide three different subsets of the first 16 IODC
bytes. It is the responsibility of the caller to determine from byte 3 of thememaddrbuffer (it is the
IODC_TYPE byte) which (if any) of the other bytes are valid. The caller must provide 16 bytes
of storage, beginning atmemaddr. The argumentcountis HVERSION dependent.

The existence of a module at the target HPA (ARG3) must be verified by PDC_IODC before any
transfer of data is attempted. The caller is not required to have called PDC_ADD_VALID before
calling PDC_IODC. PDC_IODC must return status value -4 if it detects a requestor bus error
while reading the IO_DC_DATA register of the target HPA. It must also return status value -4
when deconfigured if it does not normally assert PATH_SLAVE_ACK in this state.

When verifying the HPA of the target module, PDC_IODC must conform to the requirements set
forth for PDC_ADD_VALID. These requirements include the detection of other HPMC
conditions besides requestor bus errors, and the clearing of the soft errors in the bus converters on
the path to the target HPA. (See the Description section in the PDC_ADD_VALID page).

If a processor has a data or instruction cache, PDC_IODC must flush the entries in the data or
instruction cache that correspond to the memory buffer allocated by the caller.

Firmware Architecture, Ver 0.96 PDC Procedures 1-33

PDC_IODC (index 8) (continued)

The following PDC_IODC algorithm validates the existance of a module, and accesses a location
(the type field) in the IODC. Any IODC access algorithms should begin in this manner.

1. Read the module’s IO_DC_DATA register. If a bus error results, the module is presumed
not to exist and the sequence is terminated.

2. Write the value 3 to IO_DC_ADDRESS to address the module type specifier (the
IODC_TYPE byte).

3. Read IO_DC_DATA to obtain the IODC_TYPE byte.

ENGINEERING NOTE

The PDC_IODC procedure allows fixed configurations to use the processor’s PDC to
emulate a module’s IODC. In particular, for native processors without the
IO_DC_ADDRESS and IO_DC_DATA registers, the PDC_IODC procedure must be
able to identify the processor and return 0 for its IODC_TYPE byte.

PROGRAMMING NOTE

It is possible that a module that is deconfigured, even if physically present, returns a
status of -4 to the PDC_IODC "Get entry point" option. Software should use the
PDC_CONFIG "Return config info" call in conjunction with the PDC_IODC "Get
entry point" option to ascertain the modules that are physically present.

The "Nondestructive init" option (ARG1=2) is used to initialize a memory module and to
determine the size of the module. It is expected that the operating system will call this option
during powerfail recovery and during boot. The option does not change the contents of the data in
the memory module and does not do any lengthy array tests. The option sets the SPA of the
memory module identified byhpa to the base address given byspa. If the procedure returns status
value -3 it must disable the memory module’s SPA.

The format of the return parameterstat is the same as the I/O register IO_STATUS.

The return parametermax_spaspecifies the size of the memory module’s SPA space in bytes.
max_spamust be a power of two, and must be less than or equal to the value specified by the
module’s IODC_SPA[shift] field.

The return parametermax_memspecifies the amount of implemented memory in bytes.max_mem
must be strictly greater than ⁄1

2 of max_spa.

Executing this option clears the HVERSION-dependent versions of IO_STATUS[fe],
IO_STATUS[he], IO_STATUS[se], and IO_STATUS[estat]. The IO_STATUS[sl] bit is not
changed by this option.

The sequence of events performed by the "Nondestructive init" option is as follows:

1. Initialize the memory SPA.

2. Returnmax_spaandmax_mem.

3. Return error status in the RET[0] parameter. Error bitshe, se, fe, estatare cleared in the
HVERSION-dependent IO_STATUS register after the call.

Following are the calling conventions for the "Nondestructive init" option:

• Software must not call the "Nondestructive init" option for a processor-dependent IMM or for
a processor-dependent memory module which is a satellite of the IMM.

1-34 PDC Procedures Firmware Architecture, Ver 0.96

PDC_IODC (index 8) (continued)

• Software may issue CMD_RESET to processor-dependent memory modules before calling the
"Nondestructive init" option. Software need not check for the completion of the reset
command; PDC_IODC must handle this.

• For every processor-dependent memory module which is a satellite of a module other than the
IMM, that satellite must be reset or must have 0 written to its IO_SPA register, before its SPA
base can be changed by calling the "Nondestructive init" option for the primary memory
module of its interleave group.

• Software must never call the "Nondestructive init" option for a processor-dependent memory
module which has IODC_SPA[shift] = 0 (a processor dependent satellite module). Effects of
such a call are HVERSION dependent.

The "Return and clear errors" option (ARG1=4) checks for memory errors and clears the
HVERSION-dependent equivalents of IO_STATUS[sl,estat,se,he] for the processor-dependent
memory module specified by thehpa argument. Only the status of the first error of the highest
severity that has occurred since the routine was previously called is returned. If fe = 0, then all
error fields must be cleared. If fe = 1, then sl and estat must not be cleared and se and he are
HVERSION dependent.

The formats of stat, resp, info, and req are the same as the I/O registers IO_STATUS,
IO_ERR_RESP, IO_ERR_INFO, and IO_ERR_REQ, respectively. If the memory module does
not support logging of the error requestor, thereq return parameter is 0.

The "Return and clear errors" option is equivalent to the following sequence for an architected
memory module:

RET[0] ← IO_STATUS;
RET[1] ← IO_ERR_RESP;
RET[2] ← IO_ERR_INFO;
RET[3] ← IO_ERR_REQ;
IO_COMMAND← CMD_CLEAR.HE;

The "Identify primary " option (ARG1=5) identifies the primary memory module of an interleave
group. ARG3 must be the hpa of a processor-dependent memory module which has
IODC_SPA[shift] = 0. If ARG3 is the hpa of a processor-dependent memory module configured
as a satellite in an interleave group, then the hpa of the group primary is returned asprimary_hpa.
If ARG3 is the hpa of a processor-dependent memory module which has IODC_SPA[shift] = 0 but
is not configured in an interleave group, then status -19 is returned.

Firmware Architecture, Ver 0.96 PDC Procedures 1-35

PDC_MODEL (index 4)

Purpose: To return the version numbers, identifiers, and capabilities of a processor, to set the BOOT_ID of
a processor, to return the version numbers of processor components, to return the system model
information of a system, and to enable and disable the execution of product-specific instructions.

Options: Category A processors may optionally provide option ARG1=1; category B processors must
provide option ARG1=1.
Processors may optionally provide option ARG1=2 if they wish to support CVERSIONs.
Processors that support any product-specific instructions must provide options ARG1=4 and
ARG1=5. Processors that do not support any product-specific instructions must not provide
options ARG1=4 and ARG1=5.

Arguments: Description ARG1 ARG2 ARG3 ARG4 ARG5 ARG6 ARG7

Return info 0 R_addr HV --- --- --- ---
Set BOOT_ID 1 BOOT_ID HV --- --- --- ---
Return versions 2 R_addr c_index --- --- --- ---
Return system model 3 R_addr OS_ID mod_addr R R R
Return CPU ID 6 R_addr R R R R R
Return capabilities 7 R_addr R R R R R
Return boot test options 8 R_addr R R R R R
Set boot test options 9 R_addr tests_off tests_on R R R

Returns: Description RET[0] RET[1] RET[2] RET[3] RET[4]

Return info HVERSION SVERSION HV BOOT_ID SW_ID
Set BOOT_ID --- --- --- --- ---
Return versions CVERSION R R R R
Return system model mod_len R R R R
Return CPU ID CPU_ID R R R R
Return capabilities caps R R R R
Return boot test options current_tests tests_supported default_tests R R
Set boot test options R R R R R

Description RET[5] RET[6] RET[7] RET[8]

Return info SW_CAP arch_rev potential_key current_key
Set BOOT_ID --- --- --- ---
Return versions R R R R
Return system model R R R R
Return CPU ID R R R R
Return capabilities R R R R
Return boot test options R R R R R
Set boot test options R R R R R

Status: Value Description

Call completed with a warning.
An error of unspecified type occurred, but the call completed correctly.
OPTIONAL. The procedure need not report warning conditions.

3

Valid c_indexbut no CVERSION returned
Returned only by option ARG1=2.
CONDITIONAL. Must be used if the implementation does not have a CVERSION for
each validc_index.

1

OK
The call completed normally and the procedure detected no error.
REQUIRED.

0

1-36 PDC Procedures Firmware Architecture, Ver 0.96

PDC_MODEL (index 4) (continued)

Nonexistent option
ARG1 did not correspond to an option provided by the procedure.
REQUIRED.

-2

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Invalid c_index(nonexistent component)
Returned only by option ARG1=2.
REQUIRED.

-4

Invalid argument
An argument other than ARG0 or ARG1 was invalid.
OPTIONAL. The procedure need not check arguments for correctness.

-10

Assertion of BUS_POW_WARN signal detected
CONDITIONAL. Must be used if the procedure cannot satisfy the powerfail budget.

-12

Description: The "Return info" option (ARG1=0) returns the version numbers, identifiers, and capabilities of
the processor module.

The value ofHVERSION specifies the hardware version number for the processor as follows:

R model HV

0 15 16 27 28 31

The model field specifies the hardware implementation, and is changed as required for
implementations with incompatible diagnostic and/or system dependent software functionality.

The five most significant bits ofmodelare the bus ID of the bus on which the processor module is
located. See Section 4.5.6.1, IODC Data Bytes, for assignment of identifiers.

The value ofSVERSION specifies the software version number for the processor as follows:

rev model opt

0 3 4 23 24 31

Therev field is X’0 for all native processors.

Themodelfield is X’00004 for all native processors.

The definition of the SVERSION[opt] byte for native processors is:

sh R mc R lvl

24 25 26 27 28 29 30 31

sh Indicates if shadow registers are present. If shadow registers are implemented, this
field is a 1; this field is a 0 otherwise.

mc Specifies the module category. This bit is 0 for category A processors and 1 for
category B processors.

lvl Specifies the native processor capability level (0, 1, 2, and 3 for Level_0, Level_1,
Level_1.5, and Level_2, respectively).

The BOOT_ID (boot identifier) word is used during monarch selection (see the PDCE_RESET
description in Section 2.2, PDC Entry Points). BOOT_ID has the following format:

Firmware Architecture, Ver 0.96 PDC Procedures 1-37

PDC_MODEL (index 4) (continued)

R boot-id

0 29 30 31

For a category A processor that does not provide the ARG1=1 option, RET[3] is HVERSION
dependent.

For category B processors, BOOT_ID must be set to 2 at manufacture time.

TheSW_ID (software identifier) word is a system-wide resource, and is a unique 32 bit unsigned
integer (each system shipped has a different value). The SW_ID is used for software licensing and
security. The SW_ID of each system must be set to a unique value at manufacture.

If the FRU containing the SW_ID is replaced in the field, a secure mechanism must be used to set
the SW_ID in the new FRU equal to the SW_ID in the original FRU. The mechanism is
HVERSION-dependent for category A processors and SVERSION-dependent for category B
processors. This ensures that the SW_ID of the system is unchanged and that software licensed to
the system will still execute.

The SW_CAP (software capabilities) word specifies the operating system capabilities of the
processor module as follows:

isl R netware hp-rt osf mpe-ix hp-ux

0 3 4 11 12 15 16 19 20 23 24 27 28 31

SW_CAP consists of thenetwarefield for Novell Netware, thehp-rt field for HP-RT, theosf for
OSF/1, thempe-ix field for MPE-iX, and thehp-ux field for HP-UX. The operating system
capabilities associated with each of these fields are as follows:

isl Description

0 No ISL capability restrictions in effect
1-15 Defined by ISL

netware Description

0 No Novell Netware capability restrictions in effect
1-15 Defined by the Novell Netware operating system

hp-rt Description

0 No HP-RT capability restrictions in effect
1-15 Defined by the HP-RT operating system

osf Description

0 No OSF capability restrictions in effect
1-15 Defined by the OSF operating system

mpe-ix Description

0 No MPE-iX capability restrictions in effect
1-15 Defined by the MPE-iX operating system

hp-ux Description

0 No HP-UX capability restrictions in effect
1-15 Defined by the HP-UX operating system

SW_CAP is a per-processor resource. When each processor module is manufactured, the associated
SW_CAP is set to an appropriate value. When a processor module is replaced, the SW_CAP of the
new processor module must be set equal to the SW_CAP of the processor module being replaced.
SW_CAP is updated when the operating system capabilities of the processor module are changed

1-38 PDC Procedures Firmware Architecture, Ver 0.96

PDC_MODEL (index 4) (continued)

(e.g., when a system is upgraded).

Each implementation must provide an HVERSION-dependent mechanism, accessible by software,
to change the SW_CAP value. The ability to access the mechanism to change this value must be
restricted to software executing at privilege level 0.

ENGINEERING NOTE

The architecture makes no requirement as to where the SW_CAP value is physically
stored; however, the intended use of SW_CAP is dependent on implementations making
SW_CAP physically part of the processor module. SW_CAP is envisioned as residing on
the processor module when the processor module is installed in a system as an upgrade
that replaces another processor, or is installed in a system as an additional processor.

SUPPORT NOTE

While the architecture allows each processor in a system to have a different value of
SW_CAP, the field support organization does not have a vehicle to manage multiple
values of SW_CAP for a single system. There are no plans to have more than one
value of SW_CAP for a system.

The arch_rev field specifies the revision of the architected instruction set supported by the
processor. Thearch_rev values are assigned by Computer Systems Architecture. Values of
arch_rev> 0 correspond to architected supersets of the original instruction set, as shown below:

arch_rev Description

0 PA-RISC 1.0
4 PA-RISC 1.1

The "Set BOOT_ID" option (ARG1=1) is used to set the BOOT_ID of the processor module.

The "Return versions" option (ARG1=2) is used to identify the version number of each processor
component. The argumentc_indexis the processor component index;c_indexis an unsigned 32-
bit integer. The meaning of each index is HVERSION dependent, but indexes must be assigned
sequentially beginning at 0. This allows software to identify all components by repeated calls to
PDC_MODEL with increasing values ofc_indexuntil status -4 (Invalidc_index) is returned.

The CVERSION (component version) word specifies the version number for a component
associated with the processor. The interpretation of CVERSION depends on the HVERSION of
the processor.

The "Return system model" option (ARG1=3) returns the system model information of the
system.

TheOS_IDargument is used to identify the operating system, and has the following format:

R OS_ID

0 15 16 31

Refer to the description of the PDC_STABLE procedure for further information aboutOS_ID.

The mod_addrargument points to a byte-aligned array into which the system model of the
operating system indicated byOS_ID is returned. A system model string can be up to 80
characters long and its length is returned in the 32 bit unsigned integermod_len. The format and
content of each string is defined by the operating system to which it applies.

Firmware Architecture, Ver 0.96 PDC Procedures 1-39

PDC_MODEL (index 4) (continued)

PROGRAMMING NOTE

Although "Return system model" is a required option, some old processors do not
provide it. Callers should be prepared to generate system model information for such
processors, perhaps via a lookup table indexed by HVERSION.

ENGINEERING NOTE

Implementations must choose the correct system model information to return when the
same processor module and PDC are used in seperately marketed products.

Implementations are encouraged to provide an HVERSION-dependent mechanism,
accessible by software, to change the system model information.

The "Return CPU ID " option (ARG1=6) returns a value inCPU_IDwhich uniquely identifies the
CPU portion of the processor module. TheCPU_ID is returned in the following format:

Reserved Version Revision

0 19 20 26 27 31

CPU_ID values are defined in Appendix B, Version and Identification Numbers.

The "Return capabilities" option (ARG1=7) returns a value incapswhich denotes the platforms
capabilities for supporting 32-bit or 64-bit OSes. Thecapsparametr is returned in the following
format:

Reserved OS32 OS64

0 29 30 31

If the OS32 bit is set, the platform is capable of supporting 32-bit OSes. If it is clear, the platform
is not capable of supporting 32-bit OSes.

If the OS64 bit is set, the platform is capable of supporting 64-bit OSes. If it is clear, the platform
is not capable of supporting 64-bit OSes.

If the call returns "Invalid Argument" for ARG1, indicating the "Return capabilities option is not
implemented, software should assume that the platform is capable of supporting 32-bit OSes, but
is not capable of supporting 64-bit OSes.

The "Return boot test options" option (ARG1=8) returns a three values which describe the boot
tests suppoted on the platforms, and their current status regarding whether to be run or not. Each
return parameter is formatted a boot Test Option Map, shown in the following figure:

Reserved Reserved CEC PDH MEM EP LP

0 31 32 58 59 60 61 62 63

• The CEC bit refers to Central Electronic Complex tests. This may include I/O bridges and
system interconnect media.

• ThePDH bit refers to Processor Dependent Hardware tests. This may include boot ROM and
RAM and any special hardware (eg: semaphores) required by PDC.

• The MEM bit refers to Destructive Memory tests. Ths is the set of architected memory tests
described in Chapter 11 of this document.

1-40 PDC Procedures Firmware Architecture, Ver 0.96

PDC_MODEL (index 4) (continued)

• The EP bit refers to Early Processor tests that are run before memory and most of the
interconnect and I/O system are available.

• TheLP bit refers to Late Processor tests that are run after memory, interconnect, and I/O are
available.

Thecurrent_testsreturn value indicates which tests are currently set to be run on each boot of the
system.

Thetests_supportedreturn value indicates which tests could be run on the system.

Thedefault_testsreturn value indicates which tests are enabled when the system is manufactured
and shipped.

In each case, a 1 bit indicates enabled, and a 0 bit indicates disabled.

The "Set boot test options" option (ARG1=9) provide a mechanism to enable and disable specific
tests. Thetests_offargument selects a specific set of tests to disable. Thetests_offargument is
formatted as a Boot Test Option Map, and a 1 bit in a specific position indicates to disable the
corresponding test. Thetests_onargument selects a specific set of tests to enable. Thetests_on
argument is formatted as a Boot Test Option Map, and a 1 bit in a specific position indicates to
enable the corresponding test.

If an attempt is made to enable and disable the same test at the same time, or if an attempt is made
to enable or disable an unsupported test, or if a bit is set in a reserved field, "Set boot test options"
will return an Invalid Argument Status. If a test which is already disable is disabled, or a test
which is already enabled is enabled, "Set boot test options" will simply perform the action
normally.

Firmware Architecture, Ver 0.96 PDC Procedures 1-41

PDC_NVOLATILE (index 11)

Purpose: To provide access to Non-Volatile Memory.

Arguments: Description ARG1 ARG2 ARG3 ARG4

Read data 0 nvaddr memaddr count
Write data 1 nvaddr memaddr count
Return size 2 R_addr HV ---
Verify contents 3 HV HV ---
Initialize 4 HV HV ---

Returns: Description RET[0]

Read data ---
Write data ---
Return size size
Verify contents ---
Initialize ---

Status: Value Description

Call completed with a warning.
An error of unspecified type occurred, but the call completed correctly.
OPTIONAL. The procedure need not report warning conditions.

3

Correctable error
The call completed normally and the returned results are valid. The procedure
encountered an error which it was able to correct completely. Returned only by options
ARG1=0, 1, 3, and 4.
CONDITIONAL. Must be used if PDC_NVOLATILE performs error recovery.

1

OK
The call completed normally and the procedure detected no error.
REQUIRED.

0

Nonexistent option
ARG1 did not correspond to an option provided by the procedure.
REQUIRED.

-2

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Invalid NVM contents
Returned only by options ARG1=0, 1, 3, and 4.
REQUIRED.

-5

Invalid argument
An argument other than ARG0 or ARG1 was invalid.
CONDITIONAL. Must be returned by ARG1=0 or 1 ifnvaddr+count> size.
Otherwise, the procedure need not check arguments for correctness.

-10

Assertion of BUS_POW_WARN signal detected
CONDITIONAL. Must be used if the procedure cannot satisfy the powerfail budget.

-12

Description: Non-Volatile Memory (NVM) is an optional storage area used to maintain system parameters
during power outages. NVM is required to retain its contents even if the card containing it is
removed from the backplane. NVM is used during boot and in the event of an OS panic.

Non-Volatile Memory is a system-wide resource shared by all processors in a multiprocessor
system. Software must ensure that at most one call to PDC_NVOLATILE is in progress at any
one time.

The integrity of NVM is verified in an HVERSION-dependent fashion.

1-42 PDC Procedures Firmware Architecture, Ver 0.96

PDC_NVOLATILE (index 11) (continued)

Non-Volatile Memory must not have a lifetime write cycle limit.

The "Read data" option (ARG1=0) transferscountbytes from NVM addressnvaddr to memory
addressmemaddr. count is an unsigned 32-bit integer which is a multiple of four.nvaddrand
memaddrmust be word aligned. The call must return -10 ifnvaddr+count> size.

Reads must validate data integrity for the bytes being read. If a checksum algorithm is used, this
may involve validating all of NVM. If the data integrity check fails, the call must return -5 and (if
possible) the potentially bad data.

The "Write data" option (ARG1=1) transferscount bytes from memory addressmemaddrto
NVM addressnvaddr. count is an unsigned 32-bit integer which is a multiple of four.nvaddrand
memaddrmust be word aligned. The call must return -10 ifnvaddr+count> size.

If a write to NVM is interrupted due to a powerfail, reset or TOC, and if PDC cannot guarantee
that the write completed, then it must ensure that data integrity checks fail on subsequent accesses
to NVM.

ENGINEERING NOTE

A recommended method to check the validity of NVM is to include a checksum in a
non-architected tertiary state storage area. This checksum should be designed such that
NVM filled with all zeroes or all ones will not generate a valid checksum.

If a write to NVM is interrupted by a powerfail, reset, or TOC, hardware
implementations should attempt to limit the extent of damage to the words that were
being modified. This rule applies except for genuine hardware failures or sudden
power failures. For such failures, the extent of damage cannot be predicted.

The "Return size" option (ARG1=2) returns the number of bytes in the processor’s NVM.sizeis
the number of contiguous bytes implemented in NVM starting fromnvaddr=0. sizeis an unsigned
32-bit integer and must be a multiple of four.

The "Verify contents" option (ARG1=3) verifies that the NVM contents are valid.

The "Initialize " option (ARG1=4) sets the entire NVM contents to zero and initializes the validity
indicator.

PROGRAMMING NOTE

An algorithm to restore NVM in the event of a failure follows:

1. Copy out the entire contents of NVM into memory.

2. Fix all the bad values by correcting the copied values in memory.

3. Call the "Initialize" option to zero NVM.

4. Write the good copy from memory to NVM.

5. Call the "Verify contents" option to to check for successful completion.

To protect against a powerfail after the "Initialize" option has zeroed NVM, but before
the new values are written back, software should back up the contents on disk before
zeroing, or be able to reconstruct NVM from the all zero state.

Firmware Architecture, Ver 0.96 PDC Procedures 1-43

PDC_NVOLATILE (index 11) (continued)

ENGINEERING NOTE

Specific products may choose to implement multiple copies of Non-Volatile Memory to
increase the fault tolerance of the system, but this must be transparent to the callers of
PDC_NVOLATILE.

1-44 PDC Procedures Firmware Architecture, Ver 0.96

Data Format of Non-Volatile Memory
The format of Non-Volatile Memory is as follows:

HVERSION-Dependent Information

IPL Information

OS Panic Information

X’0000

X’0024

X’0080

X’0100

0

36

128

256

Providing Non-Volatile Memory is optional. If Non-Volatile Memory is provided, it must be at least 256 bytes in
size and must be used for the architected purposes.

HVERSION-Dependent Information

The first 36 bytes of NVM are HVERSION dependent.

IPL Information

The 92-byte area starting at address 36 is allocated for IPL to save initialization information. This area is used by
ISL to store the following information:

Boot Path

ISL Revision

Timestamp

LIF Utility Entries

Pointer

X’0024

X’0044

X’0048

X’004C

X’007C

X’0080

36

68

72

76

124

128

OS Panic Information

The 128-byte area starting at address 128 is allocated for the OS to save panic information. The format of this area
is OS_ID dependent.

Firmware Architecture, Ver 0.96 PDC Procedures 1-45

PDC_PIM (index 3)

Purpose: To access Processor Internal Memory (PIM).

Options: All processors must provide the ARG1=0, ARG1=1, and ARG1=4 options.

Processors that support LPMCs must provide the ARG1=2 option; other processors do not provide
the option.

The implementation of the ARG1=3 option is required for category B processors; category A
processors do not provide the option.

Arguments: Description ARG1 ARG2 ARG3 ARG4

Transfer HPMC data 0 R_addr memaddr count
Return size 1 R_addr HV ---
Transfer LPMC data 2 R_addr memaddr count
Transfer Soft boot data 3 R_addr memaddr count
Transfer TOC data 4 R_addr memaddr count

Returns: Description RET[0] RET[1]

Transfer HPMC data actcnt HV
Return size size HV
Transfer LPMC data actcnt HV
Transfer Soft boot data actcnt HV
Transfer TOC data actcnt HV

Status: Value Description

Call completed with a warning.
An error of unspecified type occurred, but the call completed correctly.
OPTIONAL. The procedure need not report warning conditions.

3

OK
The call completed normally and the procedure detected no error.
REQUIRED.

0

Nonexistent option
ARG1 did not correspond to an option provided by the procedure.
REQUIRED.

-2

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Invalid PIM contents
Returned only by options ARG1=0, 2, 3, and 4.
REQUIRED. The event did not occur or the contents are invalid due to power-on, a hard
reset, the overwriting rules, or a subsequent call to transfer the same PIM data.

-5

Invalid argument
An argument other than ARG0 or ARG1 was invalid.
OPTIONAL. The procedure need not check arguments for correctness.

-10

Assertion of BUS_POW_WARN signal detected
CONDITIONAL. Must be used if the procedure cannot satisfy the powerfail budget.

-12

Description: PIM is a per-processor, HVERSION-dependent storage area in the processor set at the time of an
HPMC, LPMC, TOC, or Soft boot. Processors may optionally store PIM information in any of the
processor-dependent areas below MEM_FREE.

The purpose of PIM is threefold:

• To help identify a failed FRU for support (for HPMCs and LPMCs)

• To save the processor’s state at the time of a TOC or Soft boot for later analysis and, in the
case of TOC, to determine if the interrupted process can be resumed.

1-46 PDC Procedures Firmware Architecture, Ver 0.96

PDC_PIM (index 3) (continued)

• To determine what recovery action should be taken.

The storage for any two or more of the four events may optionally be shared. When the storage is
shared, the following table specifies the overwriting rules.

Current PIM Contents
HPMC TOC Soft Boot LPMC

HPMC No Yes Yes Yes
TOC No No No Yes
Soft Boot No No No Yes

Event

LPMC No No No No

If the PIM contents are overwritten or they could not be stored because of the overwriting rules, a
PDC_PIM call to transfer the overwritten data must return status -5 to indicate that the PIM
contents are invalid.

At power-on or after hard reset, the PIM contents must become invalid.

PDC_PIM transfers the contents of PIM into memory. The image of PIM in memory consists of
two types of information: information about the processor state, and information about the error.
Additionally, some HVERSION-dependent information may be returned.

For an HPMC, information about the processor state and the machine check is returned. For an
LPMC, only information about the machine check is returned. For Soft boot, only information
about the processor state is returned. For TOC, information about the processor state and the
damage done by the TOC is returned.

PDC_PIM uses separate options for transferring HPMC, LPMC, Soft boot, and TOC data. For
these options, PDC_PIM transfers data from PIM into the memory address specified bymemaddr,
which is a word-aligned memory address. The value ofcount (which is an unsigned 32-bit
multiple of 4) specifies the number of bytes available in the buffer atmemaddr. One return
parameter is defined. The value ofactcnt, also an unsigned 32-bit multiple of 4, is the actual
number of bytes transferred. If the number of bytes in the PIM image exceeds thecount
parameter, onlycountbytes are transferred. Subsequent transfer requests to return the same PIM
data must return a status value of -5.

Another option ("Return size") is used to inform the caller how large a buffer is needed to hold the
PIM data. The parameter returned by this option applies to all the other options. The option
returnssize, the total size of the PIM image, which is an unsigned 32-bit multiple of 4.

Firmware Architecture, Ver 0.96 PDC Procedures 1-47

PDC_PIM (index 3) (continued)

The "Transfer HPMC data" option (ARG1=0) returns information about the processor state and
the machine check condition in the following format:

General Registers
GR0 - GR31

Control Registers
CR0 - CR31

Space Registers
SR0 - SR7

IIA Space (back entry)

IIA Offset (back entry)

Check Type

CPU State

Reserved

Cache Check

TLB Check

Bus Check

Assists Check

Reserved

Assist State

System Responder Address

System Requestor Address

Path Info

Floating-Point
Coprocessor State

X’00000000

X’00000080

X’00000100

X’00000120

X’00000124

X’00000128

X’0000012C

X’00000130

X’00000134

X’00000138

X’0000013C

X’00000140

X’00000144

X’00000148

X’0000014C

X’00000150

X’00000154

X’00000158

X’00000258

0

128

256

288

292

296

300

304

308

312

316

320

324

328

332

336

340

344

600

1-48 PDC Procedures Firmware Architecture, Ver 0.96

PDC_PIM (index 3) (continued)

The "Return size" option (ARG1=1) returnssize, the maximum total size of PIM. This option
must not modify the contents of PIM or re-enable error collection. Thesize parameter has a
constant value for any particular implementation; the operating system can read this once and
allocate sufficient buffer space for reading PIM.

The "Transfer LPMC data " option (ARG1=2) returns information about the machine check
condition in the following format:

HVERSION Dependent

Check Type

HVERSION Dependent

Reserved

Cache Check

TLB Check

Bus Check

Assists Check

Reserved

Assist State

System Responder Address

System Requestor Address

Path Info

Floating-Point
Coprocessor State

X’00000000

X’00000128

X’0000012C

X’00000130

X’00000134

X’00000138

X’0000013C

X’00000140

X’00000144

X’00000148

X’0000014C

X’00000150

X’00000154

X’00000158

X’00000258

0

296

300

304

308

312

316

320

324

328

332

336

340

344

600

Firmware Architecture, Ver 0.96 PDC Procedures 1-49

PDC_PIM (index 3) (continued)

The "Transfer Soft boot data" option (ARG1=3) returns information about the processor state in
the following format:

General Registers
GR0 - GR31

Control Registers
CR0 - CR31

Space Registers
SR0 - SR7

IIA Space (back entry)

IIA Offset (back entry)

HVERSION Dependent

CPU State

X’00000000

X’00000080

X’00000100

X’00000120

X’00000124

X’00000128

X’0000012C

X’00000130

0

128

256

288

292

296

300

304

The "Transfer TOC data" option (ARG1=4) returns information about the processor state and the
damage done by the TOC in the following format:

General Registers
GR0 - GR31

Control Registers
CR0 - CR31

Space Registers
SR0 - SR7

IIA Space (back entry)

IIA Offset (back entry)

HVERSION Dependent

CPU State

X’00000000

X’00000080

X’00000100

X’00000120

X’00000124

X’00000128

X’0000012C

X’00000130

0

128

256

288

292

296

300

304

1-50 PDC Procedures Firmware Architecture, Ver 0.96

Data Format of PIM
Although different amounts of information are returned for the four types of events, the description of what the
various indicators mean is largely independent of which event was logged.

Processor State

A portion of PIM is used to store the processor’s General Registers, Control Registers, and Space Registers. The
front entries of the IIA Space and IIA Offset Queues (CR17 and CR18) are saved in the Control Registers area,
while the back entries of the IIA Space and IIA Offset Queues are saved in the IIA Space and IIA Offset areas,
respectively. Storing of the CPU State word is required for HPMCs, TOCs, and Soft Boots, and is HVERSION
dependent for LPMCs.

For HPMCs, this processor state reflects the CPU state saved at the time the HPMC interruption was taken and does
not necessarily correspond to the time of occurrence of the condition which caused the HPMC.

Several bits in the CPU State word indicate the success of the CPU state save. The format of the CPU State word
for these bits is as follows:

iqv iqf ipv grv crv srv trv R

0 1 2 3 4 5 6 7 25

Field Description

IIA queue Valid. When set, the IIA queue entries are valid. The validity ofiqv
is independent of the value of the IPSW (CR22) Q-bit.

iqv

IIA queue Failure. The front element of the IIA queue points at the instruction
that caused the failure. This indicates that the current instruction stream is
synchronized with the failure. This bit is only defined for HPMCs; it is
HVERSION dependent for TOCs and soft boots.

iqf

IPRs Valid. When set, the IIR (CR19) contains the instruction causing the
failure. The IOR (CR21) and ISR (CR20) are HVERSION dependent. This bit
is only defined for HPMCs; it is HVERSION dependent for TOCs and soft
boots.

ipv

GRs Valid. When set, the general registers are valid.grv
CRs Valid. When set, CRs 0-16 and the EIR (CR23) are valid (also CR22 for
HPMC and Soft Boot). This does not include the IPRs, the IIA queues, or the
temporary registers since they have individual indicators. In addition, this bit
does not indicate the validity of the IPSW for TOCs; the IPSW must always be
valid for TOCs.

crv

SRs Valid. When set, the space registers are valid.srv
Temporary Registers Valid. When set, the temporary registers (CR24 through
CR31) are valid.

trv

For each of the bitsgrv, crv, srv, trv in the CPU State word, a value of 1 implies that the corresponding CPU state in
PIM reflects the state that would have occurred if the event had been processed as a Group 2 interruption.

Firmware Architecture, Ver 0.96 PDC Procedures 1-51

The following table describes how theiqv, iqf, andipv bits qualify the CPU state:

iqv iqf ipv Meaning

The IIA queues reflect the state that would have occurred if
the HPMC had been processed as a Group 1 interruption.

0 0 0

The IIA queues reflect the state that would have occurred if
the HPMC had been processed as a Group 2 interruption.

1 0 0

The IIA queues reflect the state that would have occurred if
the HPMC had been processed as a Group 3 interruption.

1 1 0

The IIA queues reflect the state that would have occurred if
the HPMC had been processed as a Group 3 interruption and
the IIR contains the instruction causing the failure.

1 1 1

No other combinations of these three bits are allowed. Refer toPrecision Architecture and Instruction Reference
Manual for a description of how Group 1, 2, and 3 interruptions are processed.

The IA queues are defined when the IPSW Q-bit is zero, but do not point to the failure.

Error Parameters

A portion of PIM is used to return machine independent indicators of the failure. The nature of a failure is passed
to the PDC_PIM caller by setting nonzero values in the appropriate fields. By providing as much information as
possible to software, it is more likely that rebooting the system will be not be necessary. This information is
provided only for HPMCs, LPMCs, and TOCs, and is presented hierarchically.

CPU
State

Check
Type

Cache
Check

TLB
Check

Bus
Check

Assists
Check

System
Requestor
Address

System
Responder
Address

Path
Info

Assist
State

FP Copr.
State

1-52 PDC Procedures Firmware Architecture, Ver 0.96

CPU State

CPU State word format for HPMC

The applicable portion of the CPU State word for the HPMC option (ARG1=0) is as follows:

R tl hd sis cs

7 25 26 27 28 29 30 31

Field Description

Trap Lost. This field indicates which, if any, of the Group 4 interruptions were
lost as a result of taking the HPMC. This field is only valid when
CHECK_ISOLATED is logged.

tl

Hardware Damage. This bit is used to indicate that some processor hardware is
damaged and so this processor must no longer be used, although certain
minimum functionality is available. This bit is only valid when
CHECK_ISOLATED or CHECK_CRITICAL is logged.

hd

Storage Integrity Synchronized. This bit is used to describe the point of storage
integrity. This bit is only valid when CHECK_ISOLATED is logged.

sis

Check Severity. This field is used to determine the severity of the HPMC.cs

When there is hardware damage, software must avoid the following until the processor is replaced:

• Access of any of the TLB functionality.

• Access of any assist processor functionality.

• PDC calls except for PDC_PIM, PDC_CHASSIS, PDC_CONFIG, and PDC_PROC.

Encoding for thetl field:

tl Meaning

0 no Group 4 interruption lost
1 the HPMC caused the loss of a higher-privilege transfer trap
2 the HPMC caused the loss of a lower-privilege transfer trap
3 the HPMC caused the loss of a taken branch trap

The check severity field,cs, allows OS_HPMC to determine the error severity, and thus what actions need to be
taken. The interpretation of the encodings of the check severity field is as follows:

Value Name Description

An error has occurred which hardware determines to be serious
enough to require a reboot. This may be because hardware has lost
information about the error, or because there is no way to encode
the error in PIM. This indicates a possible lack of storage integrity.

0 CHECK_CRITICAL

An error has occurred but has been fully corrected or circumvented
in a way transparent to software. There must be synchronized
storage integrity for this encoding to be logged.

1 CHECK_TRANSPARENT

An error has occurred but the PIM contents must be used by
OS_HPMC to determine the error severity and decide what
recovery actions are required. There must be storage integrity for
this encoding to be logged, although it may not be synchronized.

2-3 CHECK_ISOLATED

If CHECK_CRITICAL is logged, all PIM error parameters other than the CPU State word are HVERSION
dependent.

Firmware Architecture, Ver 0.96 PDC Procedures 1-53

SUPPORT NOTE

Implementations are encouraged, when logging CHECK_CRITICAL, to set all other indicators
describing the error in PIM to valid information about the error.

If CHECK_ISOLATED is logged, hardware must consider whether the error would remain isolated through
recovery. For example, discovering an error in a dirty data cache line must not be logged as CHECK_ISOLATED
if it might be written back to memory without signalling the error before recovery is effected.

Logging CHECK_TRANSPARENT indicates that the error was completely corrected by PDCE_CHECK; that is,
OS_HPMC need only execute an RFI to resume normal system operation (provided that the CPU state in PIM is
valid). Problems which require OS_HPMC recovery action, or which may have altered architectural state
observable to software must not be logged as CHECK_TRANSPARENT. (Invalidating TLB entries, for example,
is not always transparent, since software relies on certain translations remaining in the TLB.) All other fields in
PIM must contain valid information about the error.

Logging CHECK_TRANSPARENT indicates that there is storage integrity, and that ifiqv=1 and IPSW Q-bit=1,
the IIA queues indicate the point of storage integrity (for the description of storage integrity, see Section 3.9.1,
Module Behavior as a Bus Requestor).

Although logging CHECK_ISOLATED indicates that there is storage integrity, nothing is asserted about the point
of storage integrity. The Storage Integrity Synchronized bit,sis, describes the point of storage integrity. If
CHECK_ISOLATED is logged andiqv=1, a value of one means that the point of storage integrity is at the place
pointed to by the queues. In other words, all stores up to the place pointed to by the queues have been completed,
and no stores at or beyond the place pointed to by the queues have been completed. If CHECK_ISOLATED is
logged andiqv=1, a value of zero means that the point of storage integrity may be before or after the place pointed
to by the queues. In this situation, the processor has stopped updating cache and memory at some point, but has
then gone ahead or rolled back such that the queues do not reflect the actual point where memory updating stopped.

PROGRAMMING NOTE

Software conventions could be built to consider actions other than rebooting when thesis bit is zero.
This might involve maintaining a log in memory with an entry for each context switch. From this log,
then, it could be determined which process was running when the processor stopped storing.

CPU State word format for Soft boot

The applicable portion of the CPU State word for the Soft Boot option (ARG1=3) is as follows:

R HV

7 28 29 31

CPU State word format for TOC

The applicable portion of the CPU State word for the TOC option (ARG1=4) is as follows:

R HV td

7 29 30 31

Thetd field defines the error severity due to TOC, as follows:

1-54 PDC Procedures Firmware Architecture, Ver 0.96

Value Description

TOC has caused system damage and a reboot is necessary.0
TOC did not cause any damage to the system state and no queued-up
transactions in the processor module were aborted.

1

Detailed Error Information

For HPMCs and LPMCs, additional indicators are defined to provide more detailed information about the machine
check. These indicators are valid only when certain validity bits are set.

Indicator Condition when Valid

Check Type Always
Cache Check Check Type[c]=1
TLB Check Check Type[t]=1
Bus Check Check Type[b]=1
Assists Check Check Type[a]=1

Check Type[a]=1 and (Assists Check[coc]=1 or Assists Check[sc]=1)Assist State
Sys. Resp. Address Check Type[b]=1 and Bus Check[rsv]=1
Sys. Req. Address Check Type[b]=1 and Bus Check[rqv]=1
Path Info Check Type[b]=1 and Bus Check[piv]=1

Check Type[a]=1, Assists Check[coc]=1, and Assist State[fps]=2FP Copr. State

For HPMCs, CHECK_ISOLATED or CHECK_TRANSPARENT must also be logged for these indicators to be
valid.

Check Type

The Check Type word allows the Operating System to determine where the machine state is potentially corrupt and
if functionality of the system is reduced. Each bit of the word corresponds to a major functional area of the
processor which could have caused the machine check.

The format of the Check Type word is as follows:

c t b a R HV

0 1 2 3 4 30 31

Field Description

Cache Check. Ifc=1, the Cache Check word is valid.c
TLB Check. If t=1, the TLB Check word is valid.t
Bus Check. Ifb=1, the Bus Check word is valid.b
Assists Check. Ifa=1, the Assists Check word is valid.a

Firmware Architecture, Ver 0.96 PDC Procedures 1-55

Cache Check

The format of the Cache Check word is as follows:

icc dcc tc dc crg lc rcc R padd

0 1 2 3 4 5 6 7 11 12 31

Field Description

I-cache check. The failure is located in the I-cache.icc
D-cache check. The failure is located in the D-cache or a combined cache.dcc
Tag check. The failure is in the tag portion of some D-cache or combined cache
line.

tc

Data check. The failure is in the data portion of some D-cache or combined
cache line.

dc

Reconfiguration. Reconfiguration has occurred in the I-cache or D-cache.crg
Line corrupt. The failure resulted in loss of tag, data, or status in some cache
line.

lc

Remote cache coherence. When set, the generation of coherent operations has
been disabled; PDC_CACHE must be called before coherent operations may be
issued.

rcc

Physical address. Thepaddfield specifies the page-aligned physical address of
the failing line and is valid only iftc=0 andlc=1.

padd

The icc andcrg bits are used for reporting errors in the I-cache. Thedcc, tc, dc, crg, lc , andpaddbits are used for
reporting errors in a D-cache or combined cache. Ifdcc is 0, tc, dc, lc , andpaddmust all be zero. If thelc bit is 1,
data which may have been dirty was lost from the cache, and software action is necessary. If thetc bit is also 1, it is
not known where in memory the line containing the lost data came from. Iftc is 0, thepadd field contains the
physical page number of the page containing the lost data. This might result in a reboot, depending on whether this
page belonged to a critical process or not. If thelc bit is 0, no data has been lost and no software action is required.

The encodings of various cache errors using this word is as follows:

icc dcc tc dc lc Description

The error was in the I-cache.1 0 0 0 0
The error was in some clean D-cache line. Thetc and dc fields indicate
whether the error was in the tag or data portion of the cache.

0 1 X X 0

The error was in the data portion of some dirty D-cache line. This error
situation signals the corruption of the data at physical addresspadd.

0 1 0 1 1

The error was in the tag portion of some D-cache line.0 1 1 0 1

Hardware is not required to report any reconfiguration information.

SUPPORT NOTE

To increase system diagnosability, implementations are encouraged to inform the OS about corrected
cache errors and cache reconfiguration.

1-56 PDC Procedures Firmware Architecture, Ver 0.96

TLB Check

The format of the TLB Check word is as follows:

itc dtc trg tuc tnf R

0 1 2 3 4 5 31

Field Description

ITLB Check. The failure is located in the ITLB.itc
DTLB Check. The failure is located in the DTLB or a combined TLB.dtc
Reconfiguration. Reconfiguration has occurred in the ITLB or DTLB.trg
TLB Unchanged. When set, PDCE_CHECK has not invalidated, removed, or
initialized all or part of the TLB system.

tuc

TLB Nonfunctional. When set, the TLB subsystem (including the space
registers) is nonfunctional and access to it may cause unpredictable results.

tnf

When the TLB subsystem is nonfunctional, software must avoid the following:

• Execution of any of these instructions: BLE, IDTLBA, IDTLBP, IITLBA, IITLBP, LDSID, LHA, LPA, MFSP,
MTSP, PDTLB, PDTLBE, PITLB, PITLBE, PROBER, PROBERI, PROBEW, PROBEWI, PDC, FDC, FIC.

• The setting to 1 of the PSW C, P, and D-bits.

• Execution of MTCTL or MFCTL which references any of these control registers:

- CR 8 (PID 1)
- CR 9 (PID 2)
- CR 12 (PID 3)
- CR 13 (PID 4)
- CR 20 (Interruption Space Register)
- CR 21 (Interruption Offset Register)

Since the FDC instruction must not be used when the TLB is nonfunctional, OS_HPMC must flush the entire cache
using FDCE instructions if it wants to flush any item from the data cache.

Hardware is not required to report any reconfiguration information.

SUPPORT NOTE

To increase system diagnosability, implementations are encouraged to inform the OS about any
reconfiguration in the TLB(s).

Firmware Architecture, Ver 0.96 PDC Procedures 1-57

Bus Check

The format of the Bus Check word is as follows:

HV rsv rqv var type size piv bsv busstat

0 9 10 11 12 15 16 19 20 23 24 25 26 31

Field Description

when set, the System Responder Address word is validrsv
when set, the System Requestor Address word is validrqv

var indicates the variant of the transaction in which the error occurred
type indicates the type of the transaction in which the error occurred
size indicates the size of the transaction in which the error occurred

when set, the Path Info word is validpiv
bsv error severity for bus errors

busstat encodings for architected bus errors

Encoding for thevar field:

Variant Description

0 Unknown or illegal variant
1 DFLT
2 INV
3 SH
4 PVT
5 SH_PVT
6 COH
7 Reserved

8-15 Bus Spec. Dep.

Encoding for thetypefield:

Type Description

0 Unknown or illegal type
1 READ
2 WRITE
3 CLEAR
4 READ_REQ
5 READ_RESP
6 CLEAR_REQ
7 NULL
8 PDC
9 FDC
10 FIC
11 SYNC
12 PDTLB
13 PITLB

14-15 Reserved

1-58 PDC Procedures Firmware Architecture, Ver 0.96

Encoding for thesizefield:

Size Description

0 Unknown or illegal size
1 1 byte
2 2 byte
3 4 byte
4 Reserved
5 16 byte
6 32 byte
7 64 byte
8 128 byte
9 256 byte
10 512 byte
11 1024 byte
12 2048 byte
13 4096 byte
14 Reserved
15 No size1

Notes:

1. Required for PDC, FDC, FIC, SYNC, PDTLB, PITLB, and NULL transactions. Not allowed for other transactions.

Encoding for thebsvfield:

bsv Severity

0 Fatal
1 Soft

Firmware Architecture, Ver 0.96 PDC Procedures 1-59

Encoding for thebusstatfield:

busstat Error

0 ERR_DEPEND
1 ERR_UNIMPL
2 Reserved
3 ERR_MODE_RS
4 ERR_ERROR_RQ
5 ERR_PARITY_RS
6 ERR_PROTOCOL_RQ
7 ERR_ADDRESS_RQ

8-12 Reserved
13 HV
14 Reserved
15 ERR_BUS_RQ

16-23 HV
24-49 Reserved

50 ERR_RESPONSE
51 ERR_BUS_RS
52 ERR_ERROR_RS
53 ERR_PARITY_RQ
54 ERR_PROTOCOL_RS
55 ERR_ADDRESS_RS
56 ERR_MODE_RQ

57-58 Reserved
59 ERR_TIMEOUT
60 ERR_RETRY
61 Reserved
62 ERR_IMPROP
63 Reserved

Assists Check

The format of the Assists Check word is as follows:

coc sc R

0 1 2 31

Field Description

Coprocessor Check. Ifcoc=1, bits 0..15 of the Assist State word are valid.coc
SFU Check. Ifsc=1, bits 16..31 of the Assist State word are valid.sc

Assist State

The format of the Assist State word is as follows:

fps R

0 1 2 31

1-60 PDC Procedures Firmware Architecture, Ver 0.96

Thefpsfield defines the floating-point coprocessor (uid=0 or uid=1) state:

Value Description

The coprocessor is functional but its state is invalid and is not
saved in PIM.

0

The coprocessor has failed and its state is not saved in PIM.1
The coprocessor has failed but its state has been saved in PIM.2

3 Reserved

When the floating-point coprocessor has failed (fps = 1 or 2), software must not execute any floating-point
instruction until the CCR bit 0 is cleared.

System Responder Address

The System Responder Address word identifies the system responder of a failed operation; its format is as follows:

sys-resp-address

0 31

The number of bits in this field which are valid depends on the operation size. Valid bits are 0..n, wheren = 31 -
 log2 (size); the remaining bits are HVERSION dependent. Since the largest system operation size is 4 Kbytes, bits
0..19 are always valid whenrsv=1.

System Requestor Address

The System Requestor Address word identifies the system requestor of a failed operation; its format is as follows:

HV sys-req-flex sys-req-fixed rm HV

0 3 4 13 14 19 20 21 31

Field Description

sys-req-flex System requestor’s flex address
sys-req-fixed System requestor’s fixed address
rm Validation of thesys-req-flexfield

Path Info

The format of the Path Info word is as follows:

path-id pv R source sv R

0 6 7 8 13 14 19 20 21 31

Thepath-idfield indicates the transaction path used by the operation for which the error is logged and it is qualified
by thepv bit. Thepath-idfield is valid whenpv=1.

Thesourcefield is the fixed address of the source module of the operation. In a cache-coherent operation, a cache-
coherent module may respond, rather than the addressed system responder module. It is the fixed address of this
third party module which becomes the source address of the operation. Logging of the source address is optional;
thesvbit qualifies thesourcefield.

Firmware Architecture, Ver 0.96 PDC Procedures 1-61

Floating-Point Coprocessor State

The floating-point coprocessor state is returned in the following format:

FPR 0

FPR 1

.

.

.

FPR 31

X’00000158

X’00000160

X’00000168

X’00000250

X’00000258

344

352

360

592

600

If software wants the address of these registers in memory to occur at doubleword-aligned boundaries, it must
adjust the word-alignedmemaddrparameter in the PDC_PIM procedure to be doubleword aligned.

1-62 PDC Procedures Firmware Architecture, Ver 0.96

PDC_POW_FAIL (index 1)

Purpose: To perform whatever HVERSION dependent steps are necessary to prepare the system for
powerfail.

Arguments: Description ARG1

Prepare for powerfail 0

Status: Value Description

Call completed with a warning.
An error of unspecified type occurred, but the call completed correctly.
OPTIONAL. The procedure need not report warning conditions.

3

OK
The call completed normally and the procedure detected no error. No powerfail
warning is in effect.
REQUIRED.

0

Nonexistent option
ARG1 did not correspond to an option provided by the procedure.
REQUIRED.

-2

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Invalid argument
An argument other than ARG0 or ARG1 was invalid.
OPTIONAL. The procedure need not check arguments for correctness.

-10

Description: This procedure is called by the operating system when it receives a power failure interrupt and
after it completes its own powerfail preparation. PDC_POW_FAIL does whatever HVERSION-
dependent preparation is necessary and then waits idly until primary power fails. In the idle state,
the procedure must not generate any bus transactions.

If no powerfail warning is in effect at the time of the call, the PDC_POW_FAIL procedure returns
to the caller.

The "Prepare for powerfail" option (ARG1=0) checks the BUS_POW_WARN signal on the
central bus. If BUS_POW_WARN is asserted, PDC_POW_FAIL prepares the system for the loss
of primary power. After preparation is completed, it enters an idle loop. If BUS_POW_WARN is
not asserted, PDC_POW_FAIL simply returns to its caller.

The stack space available for use by PDC_POW_FAIL is 512 bytes of memory, in contrast to the
7 Kbytes available for other PDC and IODC procedures.

The existence of the PDC_POW_FAIL procedure is HVERSION dependent. Processors in
systems which support powerfail recovery must provide this procedure; processors in systems
which do not support powerfail recovery must not provide this procedure.

Firmware Architecture, Ver 0.96 PDC Procedures 1-63

PDC_PSW (index 21)

Purpose: To manage the default value of configurable PSW bits for a processor.

Arguments: Description ARG1 ARG2 ARG3 ARG4

Return Mask 0 R_addr R R
Return Defaults 1 R_addr R R
Set Defaults 2 state R R

Returns: Description RET[0]

Return Mask mask
Return Defaults defaults
Set Defaults --

Status: Value Description

Call completed with a warning.
An error of unspecified type occurred, but the call completed correctly.
OPTIONAL. The procedure need not report warning conditions.

3

OK
The call completed normally and the procedure detected no error.
REQUIRED.

0

Nonexistent option
ARG1 did not correspond to an option provided by the procedure.
REQUIRED.

-2

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Invalid argument
An argument other than ARG0 or ARG1 was invalid.
OPTIONAL. The procedure need not check arguments for correctness.

-10

Assertion of BUS_POW_WARN signal detected
CONDITIONAL. Must be used if the procedure cannot satisfy the powerfail budget.

-12

Description: The "Return Mask" option (ARG1=0) returns, inmask, a mask indicating which default PSW
bits are implemented by the processor. The format ofmaskis:

Reserved w e

0 29 3031

A corresponding default PSW bit is implemented if and only if the mask bit is 1.

The"Return Defaults" option (ARG1=1) returns the current default PSW values of the processor
in defaults. The format ofdefaults is the same as that described above formask. The w field
indicates the default width of the processor. Thew field also determines whether the External
Interrupt Request (EIR) register is treated as a right-justified 32-bit register or a full 64-bit
register. Thee field indicates the default endianness of the processor. Both bits determine how
the PSW W-bit and E-bit will be set on an interruption. Only those bits whosemaskvalue (from
the"Return Mask" option) is 1 are valid.

The "Set Defaults" option (ARG1=2) sets the default PSW values of the processor to the value
specified instate. The format ofstateis the same as that described above formask. Only those
bits whosemaskvalue (from the"Return Mask" option) is 1 will be affected.

The default PSW values are per-processor resources and must be maintained as non-volatile state.

1-64 PDC Procedures Firmware Architecture, Ver 0.96

PDC_STABLE (index 10)

Purpose: To provide access to Stable Storage.

Arguments: Description ARG1 ARG2 ARG3 ARG4

Read data 0 staddr memaddr count
Write data 1 staddr memaddr count
Return size 2 R_addr HV ---
Verify contents 3 HV HV ---
Initialize 4 HV HV ---

Returns: Description RET[0]

Read data ---
Write data ---
Return size size
Verify contents ---
Initialize ---

Status: Value Description

Call completed with a warning.
An error of unspecified type occurred, but the call completed correctly.
OPTIONAL. The procedure need not report warning conditions.

3

Correctable error
The call completed normally and the returned results are valid. The procedure
encountered an error which it was able to correct completely. Returned only by options
ARG1=0, 1, 3, and 4.
CONDITIONAL. Must be used if PDC_STABLE performs error recovery.

1

OK
The call completed normally and the procedure detected no error.
REQUIRED.

0

Nonexistent option
ARG1 did not correspond to an option provided by the procedure.
REQUIRED.

-2

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Invalid Stable Storage contents
Returned only by options ARG1=0, 1, 3, and 4.
REQUIRED.

-5

Invalid argument
An argument other than ARG0 or ARG1 was invalid.
CONDITIONAL. Must be returned by ARG1=0 or 1 ifstaddr+count> size.
Otherwise, the procedure need not check arguments for correctness.

-10

Assertion of BUS_POW_WARN signal detected
CONDITIONAL. Must be used if the procedure cannot satisfy the powerfail budget.

-12

Description: Stable Storageis used to maintain system parameters during power outages. It is required to
retain its contents even if the card containing it is removed from the backplane. Stable Storage is
used during boot. It contains the paths to the console and boot devices.

Stable Storage is a system-wide resource shared by all processors in a multiprocessor system.
Software must ensure that at most one call to PDC_STABLE is in progress at any one time.

The integrity of the storage must be guaranteed. Reliability must be such that an undetected error
will occur only once in the lifetime of a million machines.

Firmware Architecture, Ver 0.96 PDC Procedures 1-65

PDC_STABLE (index 10) (continued)

Stable Storage must have a minimum lifetime of 10,000 write cycles.

The "Read data" option (ARG1=0) transferscount bytes from Stable Storage addressstaddr to
memory addressmemaddr. count is an unsigned 32-bit integer which is a multiple of four.staddr
andmemaddrmust be word aligned. The call must return -10 ifstaddr+count> size.

Reads must validate data integrity for the bytes being read. If a checksum algorithm is used, this
may involve validating all of Stable Storage. If the data integrity check fails, the call must return
-5 and (if possible) the potentially bad data.

The "Write data" option (ARG1=1) transferscount bytes from memory addressmemaddrto
Stable Storage addressstaddr. count is an unsigned 32-bit integer which is a multiple of four.
staddrandmemaddrmust be word aligned. The call must return -10 ifstaddr+count> size.

Writes must not mask errors in Stable Storage. Before a write is attempted, PDC_STABLE must
check the data integrity of the words being modified. If the check fails, PDC_STABLE must not
attempt to write any data: instead, it must return -5. If the check succeeds, the write can proceed.
After the data is written, PDC_STABLE must also verify that the write took place correctly. If the
write did not succeed, -3 must be returned.

If a write to Stable Storage is interrupted due to a powerfail, reset, or TOC, and if PDC cannot
guarantee that the write completed, then it must ensure that data integrity checks fail on
subsequent accesses to Stable Storage.

ENGINEERING NOTE

A recommended method to check the validity of Stable Storage is to include a
checksum in a non-architected tertiary state storage area. This checksum should be
designed such that a Stable Storage filled with all zeroes or all ones will not generate a
valid checksum.

If a write to Stable Storage is interrupted by a powerfail, reset, or TOC, hardware
implementations should attempt to limit the extent of damage to the words that were
being modified. This rule applies except for genuine hardware failures or sudden
power failures. For such failures, the extent of damage cannot be predicted.

The "Return size" option (ARG1=2) returns the number of bytes in the processor’s Stable
Storage. size is the number of contiguous bytes implemented in Stable Storage starting from
staddr=0. sizeis an unsigned 32-bit integer which is a multiple of four.

The "Verify contents" option (ARG1=3) verifies that the Stable Storage contents are valid.

The "Initialize " option (ARG1=4) sets the entire contents of Stable Storage to zero and initializes
the validity indicator.

1-66 PDC Procedures Firmware Architecture, Ver 0.96

PDC_STABLE (index 10) (continued)

PROGRAMMING NOTE

An algorithm to restore Stable Storage in the event of a failure follows:

1. Copy out the entire contents of Stable Storage into memory.

2. Fix all the bad values by correcting the copied values in memory.

3. Call the "Initialize" option to zero Stable Storage.

4. Write the good copy from memory to Stable Storage.

5. Call the "Verify contents" option to check for successful completion.

To protect against a powerfail after the "Initialize" option has zeroed Stable Storage,
but before the new values are written back, software should back up the contents on
disk before zeroing, or be able to reconstruct Stable Storage from the all zero state.

ENGINEERING NOTE

Specific products may choose to implement multiple copies of Stable Storage to
increase the fault tolerance of the system, but this must be transparent to the callers of
PDC_STABLE.

Firmware Architecture, Ver 0.96 PDC Procedures 1-67

Data Format of Stable Storage
The format of Stable Storage is as follows:

Primary Boot Path

Primary Boot Path LAYERS

Reserved

OS Dependent

Console/Display Path

Console/Display Path LAYERS

Alternate Boot Path

Alternate Boot Path LAYERS

Keyboard Path

Keyboard Path LAYERS

Reserved

OS Dependent

fast-sizeROS Dependent
Diagnostic

Reserved
Reserved

OS_ID

0x00000000

0x00000020

0x00000040

0x00000058

0x00000060

0x00000080

0x000000A0

0x000000C0

0x000000E0

size

0

32

64

88

96

128

160

192

224

size

A minimum of 96 bytes of Stable Storage is required. Providing more than 96 bytes of Stable Storage is optional,
but it must be used in the architected way if provided. Failure to provide the optional locations from 96 to 192
results in the loss of certain functionality during boot. (For example, ISL would not be able to set the console path.)

1-68 PDC Procedures Firmware Architecture, Ver 0.96

Primary Boot Path

The format of the Primary Boot Path is as follows:

flags BC(0) BC(1) BC(2)

BC(3) BC(4) BC(5) MOD

LAYER_1

LAYER_2

LAYER_3

LAYER_4

LAYER_5

LAYER_6

X’00

X’04

X’08

X’0C

X’10

X’14

X’18

X’1C

X’20

0

4

8

12

16

20

24

28

32

The format offlagsis as follows:

ab as R timer

0 1 2 3 4 7

The autoboot and autosearch bits,ab andasrespectively, select the mechanism used to locate the boot device. The
timer field is used by PDC to initialize the value of its boot timer. Iftimer is 0, PDC initializes the boot timer to an
HVERSION-dependent default value. Otherwise, PDC initializes its boot timer to 2timer seconds.

The values of BC(0) through BC(5) specify the bus converter routing to the specified boot module. Values of 0
through 63 specify the fixed field of the bus converter port’s HPA. The values 64-127 are reserved. The values
128-255 are null values, and are ignored in the path specification.

If only N bus converters are specified in the path to the specified boot module, the leading bytes of the path
specifier, BC(0) through BC(5-N), are null. In that case, BC(6-N) specifies the routing through the bus converter
closest to the processor.

The value of MOD is the fixed field of the specified module. The values 64-127 are reserved. The values 128-255
are null values, and indicate that the path has not been specified.

The six-word LAYERS block is used to describe the portion of the path to a device that is beyond the module
and/or to contain device-dependent information. The path specification is based on a model that assumes a set of
layers beyond the module. A layer is defined as a series of entities which are separately addressable and exist at the
same level in a hierarchical tree structure.

Two types of entity make up the tree structure in the layers beyond the module.Devicesform the leaves in the tree
structure.Controllers form the intermediate entities between the module and devices.

ENGINEERING NOTE

For example, an HP-CIO Adapter always has layers beyond the module. The first layer contains the
device adapters on the CIO bus. If that device adapter is an HPIB adapter, the next layer might include a
disk controller on the HPIB bus.

Each entity within a layer is identified by a 32-bit number. That number should have some physical

Firmware Architecture, Ver 0.96 PDC Procedures 1-69

correspondence to the address of the entity within the layer. The number should be easy for the operator to
associate with the entity, for example, via switch positions.

If there are N layers beyond the module, the words LAYER_1 through LAYER_N specify the addresses of entities
in those layers, in order, starting with the layer closest to the module. There can be a maximum of six layers
beyond the module. If there are less than six layers beyond the module, the words after the ones used for layers are
device dependent. There is no delimiter to mark the end of the layers and the start of the device-dependent words.
It is expected that the boundary will be implicitly understood by the routines that are using the path. If there are no
layers beyond the module, all six words are device dependent.

OS Dependent

There are three OS Dependent fields in Stable Storage. The first field is 24 bytes and is located at X’40. The
second field is two bytes and is located at X’5D. The third field is at X’E0 and occupies the rest of Stable Storage
up to thesizevalue returned by the "Return Size" option.

The first halfword of the first OS Dependent area (at X’40) is used to store an identifier called OS_ID. OS-
dependent use of Stable Storage and Non-Volatile Memory is qualified by OS_ID.

Values of OS_ID are assigned by Hewlett-Packard’s Computer Systems Architecture team.

Data read from either of the OS-dependent areas of Stable Storage or the OS Panic Information area of Non-
Volatile Memory must be interpreted in the context of the value of OS_ID.

The operating system should ensure that the value of OS_ID is appropriate and that the OS-dependent areas are
initialized to proper default values.

The format of the second OS dependent area (at X’5D) and the third OS dependent area (at X’E0) depends on
OS_ID.

Fast-size

Byte X’5F is defined as follows:

R fast-size

0 3 4 7

wherefast-sizespecifies the amount of memory that PDCE_RESET initializes and tests, as follows:

fast-size Memory Tested

0 256 KB
1 512 KB
2 1 MB
3 2 MB
4 4 MB
5 8 MB
6 16 MB
7 32 MB
8 64 MB
9 128 MB
A 256 MB
B 512 MB
C 1 GB
D 2 GB
E all
F all

Values offast-sizeother than ’E’ or ’F’ specify the amount of contiguous memory to be tested; in these cases, if the
amount of contiguous memory on the local bus is less than the amount specified byfast-size, all contiguous memory
is tested and no error is indicated. The memory need not be interleaved.

1-70 PDC Procedures Firmware Architecture, Ver 0.96

When a memory module’s SPA is larger thanfast-size, PDCE_RESET must configure the memory module, but must
only initialize and test up tofast-size. That is, any transactions beyondfast-size, but within the memory’s SPA must
be slave acknowledged.

The values ’E’ and ’F’ allow all local memory, contiguous or noncontiguous, to be tested by PDC.

Console/Display Path, Alternate Boot Path, and Keyboard Path

Except for theflagsfield, the format of the Console/Display, Alternate Boot, and Keyboard Path areas are the same
as defined for the Primary Boot Path. Theflagsfield for the Console/Display Path contains atimer field the same as
the Primary Boot Path, but not theab or as bits. Theflagsfield in the Alternate Boot Path and Keyboard Path is
reserved.

ENGINEERING NOTE

Stable Storage, which can be modified by software, must have an initial value when shipped from the
factory. Each processor design group is responsible for defining initial Stable Storage values for that
processor. In the absence of more specific information, all bytes in Stable Storage should be initialized
to 0, except bytes X’07, X’67, X’87, X’A7 which should be set to X’FF (path not specified) and byte
X’5F which should be set to X’0F (fast-size= all).

Firmware Architecture, Ver 0.96 PDC Procedures 1-71

PDC_TLB (index 19)

Purpose: To manage hardware TLB miss handling.

Arguments: Description ARG1 ARG2 ARG3 ARG4 ARG5 ARG6 ARG7

Return Parameters 0 R_addr R R R R R
Set up miss handling 1 R_addr base_addr table_size set_state R R

Returns: Description RET[0] RET[1]

Return Parameters min_size max_size
Set up miss handling state R

Status: Value Description

Call completed with a warning.
An error of unspecified type occurred, but the call completed correctly.
OPTIONAL. The procedure need not report warning conditions.

3

OK
The call completed normally and the procedure detected no error.
REQUIRED.

0

Nonexistent option
ARG1 did not correspond to an option provided by the procedure.
REQUIRED.

-2

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Invalid argument
An argument other than ARG0 or ARG1 was invalid.
OPTIONAL. The procedure need not check arguments for correctness.

-10

Assertion of BUS_POW_WARN signal detected
CONDITIONAL. Must be used if the procedure cannot satisfy the powerfail budget.

-12

Description: The "Return Parameters" option (ARG1=0) returns two parameters that characterize the
processor’s hardware TLB miss handling.

min_sizeand max_sizeare the minimum and maximum sizes, in bytes, of the hardware-visible
page table supported by the processor.min_sizeand max_sizeare 32-bit unsigned integers.
min_sizeandmax_sizemust be within the range 4096 to 230, and be a power of two.

The "Set up miss handling" option (ARG1=1) sets up hardware TLB miss handling.base_addr
specifies the starting physical address of the hardware-visible page table.table_sizespecifies the
size, in bytes, of the hardware-visible page table.base_addrmust betable-sizealigned.

The set_stateargument controls the state of hardware TLB miss handling. The format of the
set_stateargument is the following:

R cr28 en

0 28 29 30 31

The en bit determines whether hardware miss handling is enabled (en = 1) or disabled (en = 0).
All processors must support enabling and disabling of hardware TLB miss handling. Thecr28
field determines how the processor’s control register 28 is updated when the hardware miss
handler fails to insert a translation and traps to software. The values of thecr28 field are as
follows:

1-72 PDC Procedures Firmware Architecture, Ver 0.96

PDC_TLB (index 19) (continued)

Value Description

Pointer to current page table entry0
Reserved1
Value from the next page table entry field of current entry2
Value from word 3 of the 16-byte line containing the current
entry

3

Support forcr28 values other than 0 is optional. Thestate return value, which has the same
format asset_state, indicates the closestcr28 value which the hardware supports. Even if the
hardware does not support the requestedcr28 value, a call made withen= 1 will enable hardware
miss handling with thecr28 value as returned instate. In particular, if PDC_TLB is called with
cr28 = 1, hardware miss handling will be enabled with acr28 value of 0, and 0 will be returned
in thecr28 field of state.

When called with theen bit = 0, thecr28 field of set_state, and thebase_addrand table_size
arguments are ignored.

Making a PDC_TLB call with different values ofbase_addrand/ortable_sizethan were used in a
previous call without first disabling hardware miss handling is allowed.

The results of calling PDC_TLB become effective immediately upon turning on either of the PSW
C or D bits.

PROGRAMMING NOTE

Because there is no mechanism to read the current values ofbase_addr, table_size, and
set_state, callers need to maintain these values for themselves.

Firmware Architecture, Ver 0.96 PDC Procedures 1-73

PDC_TOD (index 9)

Purpose: To read, set, and calibrate the Time-Of-Day (TOD) clock.

Arguments: Description ARG1 ARG2 ARG3

Read TOD 0 R_addr HV
Set TOD 1 tod_sec tod_usec
Calibrate timers 2 R_addr HV

Returns: Description RET[0] RET[1] RET[2] RET[3]

Read TOD tod_sec tod_usec R R
Set TOD --- --- --- ---
Calibrate timers calib_0 calib_1 TOD_acc CR_acc

Status: Value Description

Call completed with a warning.
An error of unspecified type occurred, but the call completed correctly.
OPTIONAL. The procedure need not report warning conditions.

3

OK
The call completed normally and the procedure detected no error.
REQUIRED.

0

Nonexistent option
ARG1 did not correspond to an option provided by the procedure.
REQUIRED.

-2

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Invalid argument
An argument other than ARG0 or ARG1 was invalid.
OPTIONAL. The procedure need not check arguments for correctness.

-10

Assertion of BUS_POW_WARN signal detected
CONDITIONAL. Must be used if the procedure cannot satisfy the powerfail budget.

-12

Time of day invalid
Returned only by option ARG1=0.
CONDITIONAL. Must be used if the implementation has a way to tell if the clock is
invalid. It is strongly recommended that all implementations which consider it important
to have a valid clock provide a mechanism to detect an invalid clock.

-13

Description: The Time-Of-Day Clock gives an absolute measure of system time. The TOD clock must be
secondary powered and must preserve the system time on a primary powerfail.

The Time-Of-Day Clock is a system-wide resource. Software must guarantee that at most one call
to PDC_TOD is in progress at any one time.

The "Read TOD" option (ARG1=0) returns two parameters which specify the elapsed time since
00:00:00 GMT, January 1, 1970. The value oftod_secis interpreted as a number of seconds, and
the value oftod_usecas microseconds.tod_usecis normalized to be less than 1,000,000. Both
tod_secandtod_usecare unsigned 32-bit integers.

"Read TOD" must return 0 for any least significant portion oftod_usecwhich is not accurate.

The "Set TOD" option (ARG1=1) is used to set the TOD clock. The meanings and format of
tod_secandtod_usecare the same as in the "Read TOD" option. Callers must normalizetod_usec
to a value less than 1,000,000, and adjust thetod_secparameter appropriately.

If the caller passes a value oftod_usecgreater than or equal to 1,000,000 then the PDC_TOD
procedure can optionally return -10 or set the TOD to an HVERSION-dependent value and return
0.

"Set TOD" may optionally discard any least significant portion oftod_usec.

1-74 PDC Procedures Firmware Architecture, Ver 0.96

PDC_TOD (index 9) (continued)

The "Calibrate timers" option (ARG1=2) is used to calibrate the Interval Timer (CR16). It
returnscalib_0 and calib_1, a double-precision floating-point value that gives the frequency of
the Interval Timer in megahertz.calib_0 andcalib_1 form a double-precision (64-bit) floating-
point value. The first 32-bits (one sign bit, 11 exponent bits, and 20 most significant bits of the
fraction field) are contributed bycalib_0, the remaining 32-bits of the fraction field are defined by
calib_1. The accuracies of the TOD clock and the Interval Timer are specified byTOD_accand
CR_acc, respectively. Both of these parameters are unsigned 32-bit integers representing clock
accuracy in parts per billion.

PROGRAMMING NOTE

It is recommended that software call the "Calibrate timers" option to determine which
clock (TOD clock or CR16 Interval Timer) is more accurate. Depending on the
relative accuracies of the two clocks and product requirements, the frequency and
mechanism of synchronizing the two clocks can be determined.

A worst case resolution of 1 sec for TOD is required. There is no guarantee that thetod_usec
parameter is significant for either the "Read TOD" or "Set TOD" options.

There is no limit on the duration of a PDC_TOD call.

The "Read TOD" option must adjust the time returned from the TOD clock if the time from the
read to the end of the call is greater than half of the worst case resolution for TOD.

The "Set TOD" option must adjust the time stored in the TOD clock if the time from the beginning
of the call to the completion of the write is greater than half of the worst case resolution for TOD.

Firmware Architecture, Ver 0.96 PDC Procedures 1-75

This page intentionally left blank

1-76 PDC Procedures Firmware Architecture, Ver 0.96

TABLE OF CONTENTS

1. PDC Procedures . 1-1
1.1 Calling Conventions . 1-2

1.1.1 Processor State. 1-2
1.1.2 Register State . 1-3
1.1.3 Stack Usage . 1-6
1.1.4 Arguments . 1-6
1.1.5 Return Parameters. 1-7
1.1.6 Status . 1-7
1.1.7 Interruptions . 1-8
1.1.8 Powerfail Warning on Central Bus during PDC Call. 1-8

1.2 PDC Procedures . 1-10
Check Type . 1-55
Cache Check . 1-56
TLB Check . 1-57
Bus Check . 1-58
Assists Check . 1-60
Assist State . 1-60
System Responder Address. 1-61
System Requestor Address. 1-61
Path Info . 1-61
Floating-Point Coprocessor State 1-62

Firmware Architecture, Ver 0.96 Contents iii

This page intentionally left blank

iv Contents Firmware Architecture, Ver 0.96

