
PA7100LC ERS

March 30, 1999

Public version 1.00

@
HEWLETT
PACKARD



i

Notice

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO

THE MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Hewlett-Packard shall not be liable for errors contained herein or for incidental or conse-

quential damages in connection with furnishing, performance, or use of this material.

Hewlett-packard assumes no responsibility for the use or reliability of its software on equip-

ment that is not furnished by Hewlett-packard.

This document contains proprietary information that is protected by copyright. All rights are

reserved. No part of this document may be photocopied, reproduced, or translated to another

language without the prior written consent of Hewlett-Packard Company.

Copyright c1992-1999 by HEWLETT-PACKARD COMPANY All Rights Reserved.

Hewlett-Packard



ii

Contents

1 PA7100LC System Overview 1

1.1 PA7100LC CPU : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

1.2 Technology and Speci�cations : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2

1.3 General Features : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

2 PA7100LC Features 5

2.1 New for PA7100LC : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

2.2 Leveraged from PA7100/earlier processors : : : : : : : : : : : : : : : : : : : : : 7

3 SuperScalar Execution 11

3.1 2-Way SuperScalar : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

3.2 Instruction Classes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

3.3 Functional Unit Contention : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

3.4 Data Dependencies : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

3.5 Control Flow : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

3.6 Special Instruction Types : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

4 Coding for Optimal Performance 15

4.1 SuperScalar Execution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

4.2 Store Instructions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

Hewlett-Packard



iii

4.3 Branch Instructions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

4.4 Integer Load Instructions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

4.5 I-Cache Misses : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

4.6 D-Cache Misses : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

4.7 TLB Misses : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

4.8 Memory Management Instructions : : : : : : : : : : : : : : : : : : : : : : : : : : 19

4.9 Graphics Features : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

4.10 Floating Point Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

4.11 Memory Moves via Floating Point Registers : : : : : : : : : : : : : : : : : : : : 20

4.12 Load/Load and Store/Store Bundles : : : : : : : : : : : : : : : : : : : : : : : : 20

5 CPU Pipeline 23

5.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23

5.2 Pipeline Details : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24

5.3 Freeze Condition Sequencing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

5.4 Reading Reserved and Nonexistent bits : : : : : : : : : : : : : : : : : : : : : : : 37

6 TLB 39

6.1 TLB organization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

6.2 TLB Page Replacement : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41

6.3 Diagnose Functionality : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41

6.4 Instruction Lookaside Bu�er : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 46

6.5 Initialization and Test : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48

6.6 TLB penalties : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48

6.7 Hardware TLB Miss Handler : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 49

6.8 Implementation Speci�c Inserts : : : : : : : : : : : : : : : : : : : : : : : : : : : 55

Hewlett-Packard



iv

7 Floating Point 57

7.1 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 57

7.2 Instruction Decoding Rules : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 58

7.3 Unimplemented Exception/Trap : : : : : : : : : : : : : : : : : : : : : : : : : : : 59

7.4 Product-Speci�c Features : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 64

7.5 Performance Tuning : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 67

8 Diagnose 73

8.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 73

8.2 Diagnose Registers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 73

8.3 Diagnose Instructions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82

8.4 Software Constraints : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92

9 Fault Tolerance 95

9.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 95

9.2 On-chip Instruction Cache : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 96

9.3 O�-chip Instruction Cache : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 96

9.4 O�-chip Data Cache : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 97

9.5 Memory Errors : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 97

9.6 I/O Errors : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 97

9.7 Software Requirements : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 98

9.8 PIM Issues : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 98

Hewlett-Packard



1

Chapter 1

PA7100LC System Overview

1.1 PA7100LC CPU

The PA7100LC is a core PA-RISC processor designed for low cost system applications. The

PA7100LC CPU (central processing unit), FP (oating point unit), MIOC (Memory and I/O

Controller), and a �rst-level instruction cache are all fabricated on a single VLSI chip. The design

is focused on the primary goals of low cost and leadership price/performance at the system

level. The PA7100LC uses standard o�-the-shelf SRAMs and DRAMs to form a complete

processor/memory subsystem with performance levels comparable to 1991 high-end desktop

workstations and servers.

The CPU and FP support PA-RISC1.1 Edition 3 features including non-cached memory

pages and also supports little-endian mode for all loads and stores, and for instruction fetches

from memory space. PA7100LC has addded implementation dependent instructions to support

multimedia applications. These instructions operate on 16-bit operands packed into the 32-bit

general registers. PA7100LC is 2-way superscalar, providing the ability to execute integer-integer

and integer-FP bundles.

The chip is fabricated in HP's proprietary CMOS26B technology which features 0.75 micron

devices and 3 levels of aluminum interconnect, and will be packaged in a 432 pin PGA from

Kyocera. The PA7100LC is designed to support system con�gurations with a range of cache

and memory sizes running at several di�erent speeds.

The PA7100LC is designed for single-processor only con�gurations and interfaces to the GSC

bus. The �rst product platform for PA7100LC is the 712. The 712 will include the LASI chip

to support I/O devices (LAN, SCSI, audio, phone, etc) and Crayon (including Artist chip for

graphics) to support the user-interface.

Hewlett-Packard



2

1.2 Technology and Speci�cations

PCX-L CPU

Clock Frequency 60-100 MHz

Performance (estimated) 50-60 Specmarks @ 60 MHz

Power Supplies Vdd = 5.00V +{ 0.25V

Vdl = 3.30V +{ 0.20V

I/O Levels TTL compatible

External SRAM access time 12ns @ 60 MHz

(standard TTL I/O SRAM) 10ns @ 75 MHz

8ns @ 100 MHz

Hewlett-Packard



3

1.3 General Features

On-Chip Instruction Cache 1 Kbyte

64 bit access,

direct-mapped,

Prefetch from O�-Chip Icache

Combined Instruction and 8 Kbytes - 2 Mbytes,

Data O�-Chip Cache 64 bit access,

direct-mapped,

hashed address,

virtual index.

480-600 Mbyte/s bandwidth.

MMU 64 entry uni�ed I/D TLB,

fully associative,

NUR replacement,

4K page size TLB,

1-entry ITLB lookaside bu�er,

8-entry, 512K - 64M BATC.

Coprocessor On-Chip,

FALU (dp),

MUL (dp),

DIV/SQRT (srt).

System Interface GSC

Test/Diagnostics Support JTAG (IEEE 1149.1-1990) interface.

Serial scan path.

Operation down to DC.

Single-step and N-step.

SuperScalar INT/INT and INT/FP execution.

Implementation-dependent multimedia (pixel op) support.

Instruction and Data Cache Bypassing.

Stall-on-Use Data Cache Miss policy.

Don't �ll on Miss Cache Hint.

Load and Clear optimizations.

Read-Tag Write-Data Stores.

Hardware TLB Miss Handler Support.

Hardware Static Branch Prediction.

Instruction Line Prefetch from Memory.

Parity error detection on I/D caches

Level 1 PA implementation (48 bit virtual address).

Up to 4 Gbytes physical memory.

32 byte cache line size, copyback STORE policy.

Hewlett-Packard



4

Hewlett-Packard



5

Chapter 2

PA7100LC Features

2.1 New for PA7100LC

2.1.1 Integer SuperScalar

The PA7100LC CPU has added a second integer ALU and extra general register ports so that

more instruction combinations are eligible to be executed as a bundle in a single cycle. The

following instruction pairs can be executed (without regard to order or doubleword alignment):

load-store/integer, integer/integer, load-store/oating-point, integer/oating-point. Branch in-

structions can be bundled, but they are restricted to be the "newer" of the two bundled in-

structions: integer/branch, oating-point/branch, and load-store/branch. Certain restrictions

do apply, especially due to register source/target conicts, branch, nulli�cation, and PSW con-

icts. In very special cases, PA7100LC can bundle ldw-ldw or stw-stw instructions to create a

single \doubleword access" to cache. Please see the chapter on SuperScalar execution for more

details.

2.1.2 Uncached Memory Pages

The PA-RISC1.1 Edition 3 Instruction Manual speci�es an optional U-bit in the TLB entry

for each page to determine whether virtual accesses to a page may be cached. PA7100LC

implements the U-bit and software may exploit this feature to optimize memory accesses that

are shared between the CPU and I/O devices. For more information, see Appendix.

Hewlett-Packard



6

2.1.3 Little Endian Mode

PA7100LC provides a mode that enables all loads and stores to use little endian byte ordering

rather than the PA-RISC default of big endian (as speci�ed in PA-RISC1.1 Edition 3). The

PSW-E bit (not part of the system mask) is used to control whether data is accessed as big or

little endian. When an interrupt (trap) occurs, the PSW-E bit is set from a diagnose register

that speci�es the "default" endian mode. When an RFI occurs the PSW-E bit is restored

from the IPSW-E bit. Note that software can change the value of the PSW-E bit by changing

the IPSW and executing an RFI, but changing the default endian mode requires execution of

diagnose instructions. PA7100LC has also implemented 9 implementation dependent load/store

instructions that override the PSW-E bit. As of rev2.0, PA7100LC also supports little-endian

instruction fetching. For more information, see Appendix.

2.1.4 Multimedia Halfword Arithmetic

PA7100LC provides support for halfword arithmetic in both of its integer ALU's. These are im-

plementation dependent instructions that are encoded in the \majop 02 - arith/logic" instruction

space by using currently unde�ned minor opcode bits. Support is provided for \halfword add",

\halfword subtract", \halfword average", and \halfword shift-and-add". Two halfword operands

can be encoded into a 32-bit general register, and both ALU's can operate simultaneously. Thus,

PA7100LC can calculate 4 halfword results per cycle. For more information, see Appendix.

2.1.5 Floating Point load/store to I/O

The PA-RISC architecture speci�es that oating point load and store instructions to I/O space

produce unde�ned results. In order to improve graphics performance, the PA7100LC CPU does

perform oating point loads and stores (including both word and doubleword instructions) with

de�ned results. When the FSTWS, FSTWX, FSTDS, FSTDX, FLDWS, FLDWX, FLDDS,

FLDDX instructions access I/O space, data is transferred between a oating point register and

an I/O space address. The FP store instructions to I/O space incur a one cycle unconditional

penalty cycle just like normal I/O space stores. The FP load perform as well as the normal

loads from I/O space.

2.1.6 ITLB Hardware Handler and CR28

PA7100LC provides a pointer in control register 28 for both ITLB and DTLB miss traps (traps

6 and 15). PA7100 provided CR28 only for DTLB miss traps. Note: we found a post-silicon

bug that makes CR28 unreliable for the ITLB miss handler.

Hewlett-Packard



7

2.2 Leveraged from PA7100/earlier processors

2.2.1 Fast TLB Inserts

PA7100LC supports the "fast" TLB insert instructions invented on PA7100. These instructions

insert to the virtual address in the ISR/IOR for DTLB inserts, and IIASQ/IIAOQ for ITLB

inserts. In addition, these instructions execute with less penalty cycles than the normal TLB

insert instructions. However, certain restrictions on how these instructions are used are required.

For more information, see Appendix.

2.2.2 Shadow Registers/RFIR

PA7100LC implements shadow registers on GR's 1,8,9,16,17,24,25. The shadow registers are

"backup" copies of the GR's that get set on all traps and can be restored with the RFIR

instruction. The RFIR instruction functions exactly like the RFI instruction, except for the

restoration of the shadow registers. These features have been used to successfully reduce the

software TLB miss penalty.

2.2.3 PA1.1 Floating Point

PA7100LC implements the Floating Point features speci�ed in PA-RISC1.1. Therefore the new

opcodes 06, 26, and 0E are all recognized as per that spec.

2.2.4 Graphics Clip Test

PA7100LC implements extra FTEST variants for graphics clip test operations. These are unde-

�ned sub-opcodes of the 0C major opcode (and in some cases, of the 0E major opcode as well).

See the oating point chapter for more details.

2.2.5 LDCW and Store Hints

PA7100LC implements the optional load-and-clear hints speci�ed in PA-RISC1.1. PA7100LC

also implements the store hints for processes executing at privilege level 0 (store hints are ignored

at other privilege levels). Therefore, a load-and-clear that "hits dirty" in the cache does not

need to issue a memory transaction, and stores do not necessarily cause a memory transaction

Hewlett-Packard



8

when the hint is speci�ed and a cache miss occurs. For more information, see the Dcache section

of the pipeline chapter.

2.2.6 Pipelined (2 state) Stores

PA7100LC implements stores to the data cache similarly to PA7100. The read-tag and write-

data operations necessary for the store are pipelined so that stores e�ectively busy the cache for

2 states. Therefore, store instructions incur a 1 cycle penalty if the following instruction bundle

contains a load or store instruction.

2.2.7 Unprivileged Reads of CR26, CR27

PA7100LC allows nonprivileged users to read control registers 26 and 27 as speci�ed in PA-

RISC1.1.

2.2.8 Trap 18 Replaced with 26,27,28

PA7100LC replaces the data memory protection trap (trap 18) with a data memory access rights

trap (trap 26), data memory protection ID trap (trap 27), and an unaligned data reference trap

(trap 28). This is per PA-RISC1.1.

2.2.9 Smaller Caches/TLB

PA7100LC has a small on-chip instruction cache (1 Kbyte) and a combined o�-chip cache (8k-

2M). PA7100LC has a 64 entry TLB with 8 block translation entries.

2.2.10 Changes to Floating Point

PA7100LC double precision multiplies incur one state of extra penalty compared to single pre-

cision multiplies. The PA7100LC oating point also has reduced pipelining capability for divide

and square root operations. Any divide or square root will halt execution of the CPU pipeline

until the divide or square root operation is �nished.

Hewlett-Packard



9

2.2.11 No MP Support

PA7100LC does not support any MP con�gurations.

2.2.12 No Graphics Flush Instructions

PA7100LC does not support any of the Venom functionality provided with Viper-based systems.

In particular, the graphics ush instructions are not implemented and will cause an illegal

instruction trap.

Hewlett-Packard



10

Hewlett-Packard



11

Chapter 3

SuperScalar Execution

3.1 2-Way SuperScalar

PA7100LC is capable of executing two instructions at a time. The instructions proceed together

through the execution pipeline and are said to be bundled. Superscalar execution is functionally

transparent to software, that is the e�ects of an instruction are the same whether it was executed

alone or as part of a superscalar bundle.

There are four kinds of restrictions placed upon bundling: functional unit contention, data

dependency restrictions, control ow restrictions, and special instruction type restrictions. These

are all described in detail below.

The bundling rules are applied entirely at run time by hardware. Compilers and hand-coders

seeking performance will want to order their instructions so that bundling is maximized, but

they are not required to do so. The only side-e�ect of sub-optimal instruction ordering is lower

performance.

3.2 Instruction Classes

For the purpose of these bundling rules the instruction set is divided into classes. Below is a list

of the classes and which opcodes fall into them. The opcodes are given as hex values for bits

0:5. Conditions in parentheses refer to values of particular bits of the instruction.

Hewlett-Packard



12

class encoding description

op 0C(26==0), 0E, 06, 26 oating-point operations

ldw 12 just LDW

stw 1A just STW

ldst 09/0B(27:29!=0), FP loads and stores

03, 10, 11, 13-19, 1B-1F other loads and stores

ex 08, 0A, 0D, integer ALU

02/24/25/2C/2D(16:19==0)

mm 34/35(16:18==0), shifts, extracts, deposits

27, 2E, 2F, 36, 37, 3C-3F

nul 02/24/25/2C/2D(16:19!=0), might nullify successor

34/35(16:18!=0)

bv 38, 3A(16==1) BE, BV

br 20-23, 28-2B, 30-33, other branches

3A(16==0), 3B

fsys 0C(26==1), 09/0B(27:29==0) FTEST and FP status/exception

sys 00, 01, 04, 05, 07, 0F, 39 system control instructions

3.3 Functional Unit Contention

These kinds of bundles are allowed:

op ldw + stw + ldst + ex + mm + nul + bv + br

ldw op + ex + mm + nul + br

stw op + ex + mm + nul + br

ldst op + ex + mm + nul + br

ex op + ldw + stw + ldst + ex + mm + nul + br + fsys

mm op + ldw + stw + ldst + ex + fsys

nul op

ldw ldw(*)

stw stw(*)

The ldw/ldw and stw/stw bundles are a special case called double word load/store. The

e�ective addresses of the data references of the two instructions must point to di�erent words

of an aligned doubleword. The two instructions must use the same space and base register and

the base register must contain an even word address (its bit 29 must be 0).

Hewlett-Packard



13

3.4 Data Dependencies

An instruction which modi�es a register will not be bundled with a subsequent instruction which

uses that register as an operand, except for the special case of a op bundled with a oating

point store of the op's result register.

A oating point load to one word of a doubleword oating-point register will not be bundled

with a op which uses the other word.

A op will not be bundled with a oating-point load if the op and load have the same target

register, or even if their targets are di�erent words of the same doubleword register.

An instruction which might set the carry/borrow bits will not be bundled with an instruc-

tion which uses the carry/borrow bits. For this purpose, the instructions which might set

carry/borrow are opcodes 24, 25, 2C, and 2D, and opcode 02 with bit 21 equal to 1 and either

bit 23 equal to 0 or bits 24 and 25 equal to 0. The instructions which use carry borrow are

SUBB, SUBBO, ADDC, ADDCO, DS, DCOR, and IDCOR.

3.5 Control Flow

An instruction which is in the delay slot of a branch is never bundled.

An instruction which is executed as the target of a taken branch and which is at an odd

word address is never bundled.

As shown in the bundle table above, an instruction which might nullify its successor will

not be bundled with that successor, unless that successor is in the op class. Speci�cally the

following types of instructions might nullify their successor: opcode f02,24,25,2C,2D,34,35g with

a nonzero test condition (bits 16:19 for f02,24,25,2C,2Dg, or bits 16:18 for f34,35g).

A ldw/ldw or stw/stw pair is not bundled if the previous instruction or instruction pair

might nullify. For this purpose the instructions which might nullify are those mentioned above

plus the ftest instruction. The nullifying instruction would have to be right before the �rst ldw

or stw, or seperated from it only by a op.

An instruction which is executed as the �rst target of an RFI or RFIR is never bundled. In

addition, the second target is never bundled if it is at an odd word address.

Hewlett-Packard



14

3.6 Special Instruction Types

Instructions in the sys class are never bundled.

Hewlett-Packard



15

Chapter 4

Coding for Optimal Performance

System performance is based on the code pathlength (number of instructions) times the instruc-

tion CPI (cycles per instruction). Software should attempt to reduce the instruction CPI in

addition to the code pathlength.

This section summarizes ways in which code can be optimized for performance for PA7100LC.

The pipeline freeze operation section of this chapter gives more details on the actual number of

penalty states for the di�erent freeze conditions. The purpose of this section is to summarize

the performance penalties and how they can be reduced. Note that many of these issues apply

to other PA-RISC implementations.

4.1 SuperScalar Execution

PA7100LC's peak instruction execution rate is two instructions per cycle. A second integer

ALU and extra GR ports have been added so that integer/load-store, integer/integer, and

integer/branch bundles can be executed in a single CPU cycle. Also, load/load and store/store

bundles can be executed in one cycle when certain instruction and addressing criteria are met.

This is in addition to the bundles supported on PA7100, including: load-store/op, int/op.

Various rules a�ect whether two instructions can be executed concurrently. Please see the

SuperScalar chapter for more details.

4.2 Store Instructions

Store instructions to memory space incur a one penalty cycle only when the next instruction

bundle accesses the D-Cache (load, store, D-ush, D-Purge, Load and Clear). Note that when

Hewlett-Packard



16

instructions are bundled (superscalar execution) it is necessary to increase the distance between

a Store and the next D-Cache access in order to not incur a penalty cycle. DCache miss penalties

for store instructions can be minimized for privileged software by using \store hints". See the

DCache miss section of this chapter.

Store instructions to I/O space also bene�t from having a non-D-Cache instruction immedi-

ately following it. There is always one unconditional penalty cycle for each I/O store instruction

and one more penalty cycle if it is followed immediately by a D-Cache instruction.

4.3 Branch Instructions

All conditional PC relative branches are predicted taken if they are backward and are predicted

untaken if they are forward. Code can take advantage of this convention. Unfortunately, only

one unconditional branch can be predicted taken. This is the BL instruction. So, when an

unconditional branch is needed try to use BL whenever possible.

Also try to avoid placing usually-taken predicted branches in the delay slot of another branch

because branch prediction is disabled for these cases.

4.4 Integer Load Instructions

Try not to have the instruction immediately following a Load to a GR be an instruction which

uses this GR as an operand. This causes a one cycle interlock penalty and will also disable

dual-issuing that instruction pair, possibly resulting in another penalty.

4.5 I-Cache Misses

During an I-Cache Miss, instruction execution proceeds as soon as the missing doubleword

instruction returns from memory but before that entire line has been written to cache. The

critical doubleword is returned �rst by the memory system, but the entire line must be copied

into the instruction caches. The on-chip Icache allows simultaneous reads and writes on every

cycle, but writes to the o�-chip cache lock the cache for 2 cycles per write. Therefore, after an

Icache miss, try to avoid loads, stores, system control instructions, memory control instructions,

and other cache misses up until the end of the Icache line that missed.

The I-Caches are direct mapped caches which can lead to high miss rates for certain appli-

cations. The on-chip cache is 1 KBytes and is mapped directly with virtual address bits [22:31].

Hewlett-Packard



17

The o�-chip Icache addresses are hashed in virtual mode when enabled with the proper diagnose

bit. The hashing function is the following:

Tag Address == IADH[12:26] (Less bits used for a smaller cache)

ivpn == Virtual Offset

isid == Space ID

Cache Address Virtual Mode Real Mode

------------- --------------------- ---------

IADH[26] ivpn[26] ivpn[26]

IADH[25] ivpn[25] ivpn[25]

IADH[24] ivpn[24] ivpn[24]

IADH[23] ivpn[23] ivpn[23]

IADH[22] ivpn[22] ivpn[22]

IADH[21] ivpn[21] ivpn[21]

IADH[20] ivpn[20] ivpn[20]

IADH[19] ivpn[19] xor isid[29] ivpn[19]

IADH[18] ivpn[18] xor isid[30] ivpn[18]

IADH[17] ivpn[17] xor isid[31] ivpn[17]

IADH[16] ivpn[16] xor isid[28] ivpn[16]

IADH[15] ivpn[15] xor isid[27] ivpn[15]

IADH[14] ivpn[14] xor isid[26] ivpn[14]

IADH[13] ivpn[13] xor isid[25] ivpn[13]

IADH[12] ivpn[12] xor isid[24] ivpn[12]

Software should try to achieve as much cache locality as possible. Knowledge of the above

hashing function can help accomplish this goal.

4.6 D-Cache Misses

During a D-Cache Miss for both integer and Floating Point Load instructions, instruction exe-

cution proceeds until an instruction is encountered which requires the Load target as an operand

(or another miss occurs). This policy for D-cache miss handling make it advantageous to sep-

arate the Load and its target register use by as many cycles as possible. Data cache access

instructions which follow the instruction with the Load Miss will slow down execution but will

not necessarily halt instruction execution.

If no copyout is required, there are free cache cycles during the memory latency, and since

the memory system returns a doubleword every 3 cycles and cache writes take only 2 cycles,

there exist \windows" during the copyin cycles that allow cache accesses instructions to steal

cycles during the copyin period. Therefore, separating a load instruction from its use can be

Hewlett-Packard



18

advantageous even when it is followed by more D-cache access instructions. However, since only

one pending cache miss can exist at a given time try to avoid accessing the missing line (or any

other cache line which misses) soon after the instruction with a Load miss.

For Store Misses (unlike for Load Misses) it is a good idea to store some other doublewords

of the missing line during the latency period of the Miss because these stores will hit in cache.

For privilege 0 applications which involve block moves, block copies or block zeroing where

the block size is 32 Bytes (the cache line size) or greater, the \don't �ll" cache hint should be

used. This should be helpful for speed critical OS routines, networking software, and graphics

routines. Non-privileged users will not see any bene�t of the \don't �ll" hint.

The D-Cache is a direct mapped cache which can lead to high miss rates for certain appli-

cations. D-Cache addresses are hashed in virtual mode when enabled with the proper diagnose

bit. The hashing function is the following:

Tag Address == DADH[12:26] (Less bits used for a smaller cache)

dvpn == Virtual Offset

dsid == Space ID

Cache Address Virtual Mode Real Mode

------------- ------------ ---------

DADH[26] dvpn[26] dvpn[26]

DADH[25] dvpn[25] dvpn[25]

DADH[24] dvpn[24] dvpn[24]

DADH[23] dvpn[23] dvpn[23]

DADH[22] dvpn[22] dvpn[22]

DADH[21] dvpn[21] dvpn[21]

DADH[20] dvpn[20] dvpn[20]

DADH[19] dvpn[19] xor dsid[29] dvpn[19]

DADH[18] dvpn[18] xor dsid[30] dvpn[18]

DADH[17] dvpn[17] xor dsid[31] dvpn[17]

DADH[16] dvpn[16] xor dsid[28] dvpn[16]

DADH[15] dvpn[15] xor dsid[27] dvpn[15]

DADH[14] dvpn[14] xor dsid[26] dvpn[14]

DADH[13] dvpn[13] xor dsid[25] dvpn[13]

DADH[12] dvpn[12] xor dsid[24] dvpn[12]

Software should try to achieve as much cache locality as possible. Knowledge of the above

hashing function can help accomplish this goal.

Hewlett-Packard



19

4.7 TLB Misses

The PA7100LC CPU implements block TLB (also called BATC: Block Address Translation

Cache) entries for the uni�ed TLB. 8 block entries can each be programmed to map 128 - 16K

pages (512K - 64MB segments). These are intended to be used to map large continuous virtual

spaces for both the OS and for graphics applications.

The OS should use the new implementation speci�c instructions for fast inserts from the

interruption parameter registers. In addition, there are many issues related to the e�ective

use of the hardware TLB handler. Contact Joe Martinka for a copy of a study of the TLB

performance of PCX-T.

The uni�ed TLB is a 64 entry fully associative TLB. The replacement algorithm for these

TLBs is described in the TLB chapter. To reduce the penalty for page crosses (ITLB looka-

side bu�er update) the BV, BE, or BLE instructions should be used whenever possible when

branching to a new page.

The PA7100LC CPU also allows TLB entries to be locked in. Locked in entries will not be

replaced until the entry is unlocked. This may be useful when real-time performance of a certain

application is critical. Unfortunately, there is no architected PDC call at this time which allows

this feature to be used by non privileged code or the OS.

The PA7100LC CPU has implemented backup \Shadow Registers" for GRs 1,8,9,16,17,24,25.

for the purpose of reducing the TLB miss penalty. These registers allow the TLB handler to

avoid the need to save and restore these registers. An RFIR instruction will automatically

restore these GRs to values which existed at the time of the last trap (in addition to doing an

RFI).

4.8 Memory Management Instructions

Most memory management instructions cause a substantial performance penalty. Cache ushes

have CPU pipeline penalties ranging from 0-5 states. Also, multiple sequential ushes that hit

dirty in the cache can quickly overload the memory bu�ers in the MIOC, stalling the CPU for

even more states while the slower DRAM's are being updated. See the pipeline chapter for more

description of cache ush penalties. Anything that can be done to reduce the amount of cache

ushing is likely to help performance signi�cantly.

PA7100LC does allows the execution of non-D-cache instructions to overlap the copy-back

time for cache ush and cache purge instructions (as long as the memory bu�ers do not overow).

Hewlett-Packard



20

4.9 Graphics Features

PA7100LC does not support any of the Venom functionality provided on PA7100 and earlier

Viper-based systems (block move instructions are not supported). The on-chip Memory and I/O

Controller supports e�cient movement of data accross GSC with normal load/store instructions.

PA7100LC does support oating point word and doubleword load/store operations to I/O space.

This should increase the e�ciency of large data movements to the frame bu�er. The FP store

instructions to I/O space incur a one cycle unconditional penalty cycle just like normal I/O

space stores. The FP I/O load performs as well as the normal loads from I/O space. The

oating point coprocessor does implement support for Graphics Clip test. See the FP chapter

for more details on these instructions. Graphics might also bene�t from the TLB-U bit, which

speci�es that pages should not be cached by the processor. See the Appendix for more details.

Multimedia support has been added in the form of parallel 16-bit arithmetic instructions. See

the Appendix for more details.

Other features mentioned in this section are especially useful for hand coded graphics rou-

tines.

4.10 Floating Point Scheduling

The penalties due to oating point interlocks are listed in the chapter on PA7100LC Floating

Point.

4.11 Memory Moves via Floating Point Registers

The speed of memory to memory moves on large blocks of data can be improved substantially

by using doubleword load/store through the oating point registers. This will utilize the full

bandwidth of the 64 bit Data Cache interface.

4.12 Load/Load and Store/Store Bundles

Whenever possible, software should try to utilize bundling of integer loads and stores to memory.

For this to occur, pairs of \ldw" or \stw"instructions must be used (none of the other load or

store word variants), the same base register must be used for each instruction in the pair, and

the e�ective addresses generated by the pair must be to di�erent words within the same aligned

doubleword. If these restrictions can be met, especially for long sequences of loads or stores,

Hewlett-Packard



21

the integer memory bandwidth e�ectively doubles. While the cpu will bundle loads and store to

U-bit or I/O space, this should be avoided as it does not result in improved bandwidth and may,

in fact, result in worse performance than if the instructions had not been bundled together.

Hewlett-Packard



22

Hewlett-Packard



23

Chapter 5

CPU Pipeline

5.1 Introduction

The PA7100LC CPU pipeline is similar to the PA7100 and earlier CMOS PA-RISC pipelines.

PA7100LC can issue two instructions per pipeline stage as explained in the previous sections.

The major pipeline change from PA7100 is a shorter instruction fetch pipe stage due to the

on-chip ICache.

-----------------------------------------

| F | I | B | A | R |

| 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |

-------------------------------------------------

| F | I | B | A | R |

| 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |

-------------------------------------------------

| F | I | B | A | R |

| 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |

-----------------------------------------

A detailed pipeline diagram is included as an appendix.

CK1|F - CK1|I : Instruction Fetch

On-Chip ICache fetches start in CK1 of F and end in CK2 of F. O�-chip ICache prefetches

start in CK2 of F-1 and end in CK2 of F. The steering logic operates on CK1 of I and picks

appropriate instructions from the on-chip ICache, o�-chip ICache, or prefetch bu�er to place

onto the 3 instruction buses, RIH/LIH/FRIH.

Hewlett-Packard



24

For branches which are predicted to be taken, the branch address calculation starts in CK1/I

and completes by the end of CK2/I. This address is issued to I-Cache.

CK2|I - CK1|B : Decode and ALU/SMU Operation

The primary execution stage is between CK2 of I and CK1 of B. In this stage the instruction

is decoded, operands are fetched, and the ALU and SMU (Shift Merge Unit) produce their

results. The Data Cache address is generated by the ALU by the end of CK1 of B.

For branches which are not predicted or are predicted to be untaken, the branch address

calculation starts in CK1/B and completes by the end of CK2/B.

CK2|B - CK2|A : Data Access

D-Cache Reads start in CK2 of B and end in CK2 of A. Load instructions and sub-word

store instructions read the Data portion of the D-Cache during this state. For all LOAD and

STORE instructions the Tag portion of the D-Cache is read during this state. The Tag portion

of the D-Cache is addressed independently from the Data portion of the D-Cache so that tag

reads can occur concurrently with a data write for the last store instruction.

Branch condition evaluation is completed by the end of CK2 of B. For branches which were

predicted to be taken the sequential address is issued to I-Cache if the condition is true. For

branches which were predicted to be untaken the branch address is issued to I-Cache if the

condition is true.

D-Cache misses are discovered in this state. At the same time as a load or store miss is

discovered the MIOC will begin handling that cache miss.

CK1|R - CK2|R : General Register Set

General Registers are set in CK2 of R. The Store bu�er can be written to D-Cache start-

ing on CK2|R and continuing for a total of two cycles. The store bu�er is only written on

CK2|R when one of the next instructions is a STORE instruction. Whenever the next STORE

instruction is encountered, the store bu�er will be written out to cache.

The PA7100LC CPU maintains a store bu�er which is set on the cycle after CK2|A of each

store (often CK2|R).

5.2 Pipeline Details

More detail on each of the pipeline stages will now be given. The reader may wish to skip this

section on the �rst reading.

F-1 Stage (P stage)

Hewlett-Packard



25

CK2 :

� The instruction address is generated from the program counter, branch adder, or PC

Queue. The address bits are sent unhashed to the on-chip ICache and are hashed and

latched for a possible o�-chip ICache access. The o�-chip ICache will be accessed whenever

the o�-chip Cache is not being used for data accesses (load/store/copy-in/copy-out/etc).

F Stage

CK1 :

� The on-chip ICache indexes its RAM arrays.

CK2 :

� The on-chip ICache completes its access, returns a doubleword, and determines hit or miss.

If an o�-chip ICache prefetch cycle was available, the o�-chip cache returns a doubleword

of prefetch data.

I Stage

CK1 :

� Instructions are selected from the caches for the separate integer, load/store, and oating

point instruction busses.

� Branch address calculation for predicted branches. begins.

CK2 :

� The Instructions are latched by all instruction decode blocks and instruction decode begins.

� General Registers operands (which are potentially bypassed from other registers) and

immediate operands are valid by the end of CK2.

� The nullify indications (from the previous instruction), and the CPU Interlock indication

are latched by the CPU control.

� Branch address calculation for branches which are predicted taken is completed.

B Stage

CK1 :

� The ALU and SMU generate their results.

Hewlett-Packard



26

� The Data address is calculated by the ALU. This address is hashed in virtual mode and

set up in the D-Cache and (on-chip) UTLB address drivers.

� Branch address calculation for branches which are predicted untaken begins.

� Early Trap quali�ers are latched here. 'Early' traps are the traps numbered 2-7, 10-11,

23-25 and sometimes 1. The remaining traps are classi�ed as 'Late' traps. The CPU takes

advantage of the fact that Early traps are known before the other traps.

CK2 :

� The Data address is driven to the D-cache and (on-chip) UTLB memory arrays.

� The Data read becomes half-completed at this point.

� The Early traps are OR'ed into one signal.

� The branch and nullify conditions are known here. The branch condition is used to select

between the Sequential and Branch addresses on this phase.

� Branch address calculation for branches which are predicted untaken is completed.

� Control Register 11 is set here for MTCTL instructions. This is done to avoid an Interlock

for MTCTL x,11 followed by an instruction which uses CR11.

� The system mask is set here for SSM, RSM, and MTSM instructions. This is done to

avoid an Interlock after these instructions. The PSW Carry/Borrow bits and the PSW V

bit are also set here to avoid an interlock.

� MFCTL data from all CRs except CR17, CR19, and CR20 is valid on this phase early

enough to be bypassed (without an interlock) to the next instruction.

� The Recovery counter is decremented for non-nulli�ed instructions if the PSW R bit is

set.

A Stage

CK1 :

� The D-RPN (Real Page Number) from the UTLB is driven to the D-Cache hit compare

block.

� Quali�ers for all traps except DTLB Protection traps and Assist exception trap are valid

here.

CK2 :

Hewlett-Packard



27

� Data from D-Cache is latched by a clock edge which is slightly delayed from CK1.

� The D-Cache Hit indication is latched by CPU control on this phase.

� All traps except the Assist Exception trap are OR'ed into one signal.

� MFCTL data for CR17, CR19, and CR20 is valid here. Data for MFSP, LDSID, LPA,

PROBEs, and Move From Diagnose instructions is also valid here.

� A transaction to the MIOC will be issued in the event of a cache miss.

R Stage

CK1 :

� The Assist Exception trap signal is valid in the CPU.

� Store data is placed into the store bu�er.

CK2 :

� General Registers are set here after all traps, misses, and nulli�es have been resolved.

R+1 Stage

CK2 :

� The CPU may drive its store data to the Data Cache RAMs for store instructions. The

completion of the store either overlaps with the execution of subsequent instructions (if

there is no Data Cache conict) or occurs while the pipeline is frozen.

5.3 Freeze Condition Sequencing

Certain conditions cause the pipeline to freeze. While the pipeline is frozen the condition which

caused the exception is either serviced or ignored (eg. a trap will cause a miss to be ignored).

Many freeze conditions can occur simultaneously and these are usually serviced sequentially in a

�xed order. However, in many cases there is some overlap in the servicing of the di�erent freeze

conditions. The order that these are serviced is based on the 'priority' of the signal indicating

the freeze condition. At the time that a freeze condition can be serviced, the highest priority

freeze condition is the next condition to be serviced. In this section, the di�erent types of freeze

conditions are explained in order of their priority. Since these freeze conditions represent all

components of the total CPI (cycles per instruction), a reasonable approximation of hang states

is listed for each.

Hewlett-Packard



28

The pipeline freezes between CK1 and CK2. ie. The pipeline advances by states which start

with CK2 and end with CK1. Unfortunately the pipe stage labels (FIBAR) are associated with

CK1 | CK2 states instead of CK2 | CK1 states. Although there is no good reason for this,

the pipe stage labels have been around too long to change them.

CPU Control guarantees that addresses and operands are valid on the freeze state imme-

diately preceding a pipeline step. The I and D addresses and operands from the last pipeline

step is repeated during the freeze states by default unless there is a need to change them. This

allows the pipeline to be frozen easily at any time.

5.3.1 Reset

The MIOC looks at the RESETL pad to determine when to drive PRESETDL to reset the main

control state machines. This occurs on cycling power and for a broadcast reset on the I/O bus.

E�ects of Reset :

� All state machines are reset.

� All PSW bits except the M-Bit are reset. The M-Bit is set.

� The CPU begins fetching instructions from address F0000004. This address is in PDC

I/O space. See the 'Start-Up Strategy' section of this ERS for more details.

Freeze Type : Reset

Number of freeze states : Many

5.3.2 Store Interlock

Single and Doubleword store instructions require two states of access time to D-Cache. This two

cycle store access time causes the pipeline to freeze whenever the next instruction bundle and

sometimes the bundle following that requires use of the Data Cache. The pipeline only freezes

to �nish a store when it sees an instruction which needs the D-Cache.

Byte and Halfword store instructions require three states of access time to D-Cache (one

read cycle and two write cycles). The two write cycles causes the pipeline to freeze whenever

the next instruction bundle and the bundle following that requires use of the Data Cache.

The exact number of freeze states is di�cult to specify without taking the speci�c instruction

sequence into account

Freeze Type : Store Interlock

Hewlett-Packard



29

Number of freeze states :

Word or Doubleword Store :

1 minus distance to next bundle with a LOAD or STORE (approx.)

Byte or Halfword Store :

2 minus distance to next bundle with a LOAD or STORE (approx.)

examples:

Store - Load ==> 1 or 2 cycle penalty

Store - Flop - Load ==> 1 or 2 cycle penalty

Store - Add - Load ==> 1 or 2 cycle penalty

Store - Add/Flop - Load ==> 0 or 1 cycle penalty

Store - Flop - Store ==> 0 or 1 cycle penalty

Store - Add - Store ==> 0 or 1 cycle penalty

Store - Add/Flop - Store ==> 0 or 1 cycle penalty

5.3.3 Coprocessor Interlock

Coprocessor interlocks due to coprocessor instruction scheduling conicts are summarized in

oating point chapter of this ERS.

5.3.4 DTLB miss (hardware handler)

When a DTLB miss occurs the CPU will attempt to handle the TLB Miss in hardware. The

CPU will read the PDIR entry (or a software \cache" of entries) and insert the entry into the

TLB if it hits. If the hardware handler hits cache and the PDIR then the DTLB miss incurs

only a 11 cycle penalty. More details on the hardware TLB handling mechanism are given in

the TLB chapter.

Freeze Type : DTLB lookaside buffer miss (Hardware Miss handler)

Number of States : 11 cycles plus possible cycles for one D-Cache Miss

5.3.5 Interruptions (traps)

An interruption occurs when any of the interruption conditions is true. The cause of interrup-

tions 2-4, and 6-28 are architected. An interruption freezes the pipeline after CK1/R.

Interruption 1 (HPMC) occurs for all cache parity errors and double bit memory errors in

addition to HPMC conditions on the GSC bus. Also, a transfer-of-control (TOC) will cause

the CPU to vector to the HPMC address. See the 'Fault Tolerance' section of this ERS for

Hewlett-Packard



30

a discussion of when HPMCs are recoverable. HPMC and TOC conditions vector to address

F0000000 in PDC I/O space.

Interruption 5 (LPMC) occurs for corrected single bit memory (DRAM) errors and certain

GSC errors. LPMC vectors directly to IVA + 5*32.

TOCs are completely decoupled from the PSW-M-Bit. ie. They are not quali�ed by the

M-bit and do not set the M-bit when they occur. However, TOCs are masked by a HVERSION

(implementation speci�c) bit. This bit is SET when 1) a TOC is taken, 2) Broadcast Reset

occurs, or 3) when a special Diagnose instruction is executed to set this bit. This bit is RESET

when a special Diagnose instruction is executed to reset this bit. PDC must reset this bit after

it clears the MIOC TOC bit but before it enters the OS TOC handler. After broadcast reset,

PDC should leave this bit set until the hard or soft boot has completed (at the software IPL

interface). It is an architectural requirement that TOCs should not interrupt Hard or Soft boot.

PDC may want to set this bit if discovers a situation where TOCs should be masked. One such

situation may be in an HPMC handler when it discovers an invalid checksum for the IVA.

Only the Group 3 traps are inhibited if the instruction is nulli�ed.

The Group 4 traps are implemented as \Taken-Before" traps rather than \Taken-After"

traps. ie. Transfer traps occur after the privilege change and the Taken Branch trap occurs

on the delay slot instruction. However, the trapped instruction does not execute (backout is

required) and these traps are the highest priority interruptions (even higher than HPMC). If

HPMC was higher priority than the Group 4 traps, software could not recover from an HPMC

because it would not know whether a group 4 interruption was lost (ie. signaled but never taken)

due to taking the HPMC.

The FIC instruction uses the UTLB for translation and can cause a Non-Access DTLB miss

trap.

PA7100LC maintains a set of back-up GRs or \shadow" registers for the purpose of reduc-

ing the DTLB and ITLB miss penalty. At the time of a trap (any trap) the values of GRs

1,8,9,16,17,24,25 are copied into their corresponding back-up registers. A special instruction

called RFIR can be used to recover these values after trap servicing has been completed. This

feature allows a trap handler to use GRs 1,8,9,16,17,24,25 without the overhead of saving and

restoring them.

All interruptions except assist exception trap require three pipeline stall cycles. Assist ex-

ception trap on FP load, store, or FTEST (not FLOPs) requires �ve pipeline stall cycles. Assist

exception trap is special only because it is valid at the CPU at a later time than the other traps.

In the freeze state the trap conditions are re-calculated.

E�ects of Interruption :

� Wait for pending instruction and data cache misses to �nish.

Hewlett-Packard



31

� Push PSW to IPSW.

� Clear PSW. Set M-bit if HPMC, Reset M-bit if not HPMC.

� Backup 'Early' SAR and Recovery Counter (since these are set early). (The PSW bits

which are set in CK2/B never got set into the 'real' PSW. These bits are also cleared

here.)

� Prevent the execution of the trapped instruction. This entails backing out of a store,

inhibiting register sets etc..

� Flush the pipeline. ie. The next two instructions which have entered the pipeline must

not execute.

� Start fetching instructions from (IVA + 32*(trap class)) if not HPMC, else fetch from

F0000000.

� Set GR \shadow registers" from GRs1,8,9,16,17,24,25.

� Ignore the following freeze conditions: CPU Interlock, Inserts, TLB Purges, Diagnose,

FIC instructions, Flushes, PDC, Load and Clear instructions, D-Cache miss, I-Cache

miss, Branch and RFI.

Freeze Type : Interruption

Number of freeze states :

5 cycles for Assist Exception Trap on Floating Point Loads and Stores

3 cycles for all other traps

Note: There is an additional two state pipeline penalty because

the next two instructions in the pipe are effectively nullified.

5.3.6 Data Cache Miss / Cache Contention

D-Cache Miss is signalled for loads/stores that miss the o�-chip cache, for ushes/purges that

hit the o�-chip cache, and for accesses to I/O or U-bit space. D-Cache Miss is only serviced if

the instruction did not trap and is not nulli�ed. However, there is a one state freeze penalty

when there is a Data-Cache Miss on an instruction which takes an interruption and there is a

Load Use Interlock on the next instruction. D-Cache Miss freezes the pipeline after CK1/R.

Cache hints speci�ed by the PA1.1 architecture can be used for stores and load-and-clear

instructions to minimize cache miss penalties. Hinted stores executed at privilege level 0 will not

cause a cache move-in if they are line-aligned. Hinted load-and-clear instructions will operate

in cache if the line is present in cache.

The CPU implements \stall-on-use" for both load and store D-Cache misses and for ushes

Hewlett-Packard



32

that hit. The minimumpenalty for STORE D-Cache misses is one cycle. The minimumpenalty

for LOAD D-Cache misses is two cycles. The minimum penalty for FLUSH/PURGE D-Cache

hits is one cycle. However, to achieve this e�ective one cycle miss penalty a number of constraints

must be met. These constraints will be described, as well as a description of how the penalty can

vary with di�erent parameters. Although it is di�cult to meet the requirements for an e�ective

one cycle miss penalty there are many ways to reduce the e�ective miss penalty. Stall-on-use can

be disabled by a diagnose bit, although this should be done only to debug prototype hardware

because it will make every data cache miss stall the pipeline until the entire line has been copied

from memory into cache.

If a load instruction misses and the target GR is not referenced immediately, the pipeline

can unfreeze and continue stepping until the target GR is referenced as a source register, or

until there is a conict on the o�-chip cache. Since a data cache miss might cause a copy-out

of dirty data and de�nitely causes a copy-in of 4 doublewords, there are many cycles that the

o�-chip cache is locked (busy) as a result of the miss. The cache controller is optimized to use

all available cache cycles (ie. there is an idle cache cycle between copy-in doublewords), but

code can probably reduce freeze states by having as few load/store/ush instructions following

a DCache miss as possible.

Since the MIOC returns data in a critical-word-�rst fashion, if the pipeline is frozen because

it is waiting for data, it can un-freeze as soon as the critical word arrives from the MIOC. But,

the pipeline may freeze again if cache is busy copying-in the rest of the line and a load/store/ush

is encountered in the instruction stream.

It is essential to avoid, if possible, references to the same line as the load miss until the

copyin completes. Failure to do so will cause the CPU to freeze until the copyin is �nished.

To reduce the e�ective D-Miss penalty for a Store it is necessary to maximize the distance

between the Store instruction and the next load (or BYTE or HALFWORD store) instruction to

the same cache line. After the copy-out window is �nished, Stores to line which originally missed

will now hit. Stores to this line will be executed during the latency period of the miss (hardware

knows to throw away each word from main memory which is being stored to in this window).

This was termed \scoreboarding" in PA7100. Store misses still busy the cache while copying-in

doublewords from MIOC, so the pipeline may freeze if a load/store/ush is encountered during

the copy-in.

To reduce the penalties on data cache ushes and purges that hit the D-cache and instruction

cache ushes that hit the I-cache, avoid referencing the data cache within �ve instruction bundles

after a ush or within three instruction bundles after a purge. This will help avoid freezing the

cpu during the copy-out/invalidate.

Because the CPU can copy-out data faster than the MIOC can write the data to memory,

it is possible to overow the MIOC ush-bu�ers by having many consecutive ush instructions

or U-bit/IO stores. When this happens, the copy-out rate is determined by the time needed to

write the DRAM's.

Hewlett-Packard



33

Typical latencies are as follows:

� If dirty data causes a copy-out, the cache is busy for 4 cycles

� Memory latency to critical doubleword in the CPU is 7 cycles (overlapped with the possible

4 cycle copy-out)

� Remaining doublewords return every 3rd cycle

� The cache is busy for 2 cycles for each doubleword returned from the MIOC

5.3.7 Incorrect Branch Prediction / RFI

Our pipeline requires one extra state for the fetching of an incorrectly predicted branch target.

(An additional cycle is required for page crosses and RFI. These penalty cycles are summarized

in a later section.)

The following branches cannot be predicted because the address or privilege calculation is

dependent upon a general register: GATE, BLR, BV, BE, BLE.

The following branches are always predicted untaken: Forward PC Relative branches. These

include COMBT, COMBF, COMIBT, COMIBF, MOVIB, MOVB, BB, BVB, ADDBT, AD-

DBF, ADDIBT, ADDIBF.

Backward PC Relative branches are usually predicted taken. They are predicted untaken

only in the following cases: 1) They are in the delay slot of another branch or I-Cache or Memory

Reference Instruction (Opcode = 000x0x). 2) The branch was the target of an RFI.

Note that the nullify indication has no e�ect on determining whether a branch is predicted

or not. eg. A nulli�ed backward PC relative branch is still predicted as taken.

The RFI instruction causes this freeze condition to be true twice. One to fetch the front of

the PCO/PCS queues and one to fetch the rear of the PCO/PCS queues. The penalty is two

cycles for each RFI target (the extra penalty is required for an ITLB lookaside update).

Incorrect branch prediction freezes the pipeline after CK1/A. RFI freezes the pipeline after

CK1/A and after CK1/R.

E�ects of Incorrect Branch Prediction / RFI :

� Continue I-fetching (for one state). The address of this instruction is the target address

for a taken, unpredicted branch, or PCO�set +8 for an untaken, predicted branch.

� Pop the PSW on the �rst RFI freeze state (if the RFI does not trap). The instruction

Hewlett-Packard



34

following the RFI (which has entered the pipe) is not executed and never traps.

� Set SR[0] if BLE. (This avoids an Interlock for BLE).

� Update the ITLB lookaside bu�er for each RFI target.

Freeze Type : Incorrect Branch Prediction / RFI

Number of states :

Wrongly Predicted Branch : 1

RFI : 1 (the RFI penalty is taken twice)

Note: There is an additional 1 state penalty for RFI because the

delay slot instruction is effectively 'nullified'.

There is also an additional cycle for RFI associated with an ITLB

lookaside update.

5.3.8 TLB Insert/Purge, Diagnose

The following instructions freeze the pipeline after CK1/A: IITLBA, IITLBP, IDTLBA, IDTLBP,

PITLB, PITLBE, PDTLB, PDTLBE, and all diagnose instructions except MTDIAG/MFDIAG.

These operations are not performed if the instruction traps or is nulli�ed.

This freeze condition is also entered for the implementation speci�c instructions IITLBPF/IDTLBPF

(Fast TLB Insert Protection). See the Appendix. Diagnose instructions need to freeze the

pipeline because these are multi-state operations.

Freeze Type : TLB Inserts/Purges and Diagnose

Number of states :

IxTLBA,IxTLBP,PxTLB with PSW-C=0 : 2

with PSW-C=1 : 3

PxTLBE : 2

IITLBPF : 3

IDTLBPF : 1

Diagnose : 3

5.3.9 CPU Interlock (load-use, other)

The CPU has two types of interlocks. The �rst is the Load-Use Interlock. This occurs when a

GR operand of an instruction directly after a 'Load' is the same general register the 'Load' is

setting. 'Load' in the previous sentence actually includes the following instructions: All loads,

MFCTL (CR17, CR19, or CR20), MFSP, LDSID, LPA, PROBE, and Diagnose (MFCPU T,

RDD, RDTLB, RDT, RI2D, RI2T). In addition, the Load Use interlock is actually signalled

Hewlett-Packard



35

any time either of the �ve bit �elds 6:10 or 11:15 matches the 'Load' target number even if these

�elds indicate immediate data.

The second type of CPU interlock is due to MTCTL (except to CR11), MTSP, and Diagnose

(MTCPU) instructions. These instructions always cause an interlock regardless of the next

instruction. These interlocks simplify the control.

The CPU Interlock occurs a maximum of once per instruction.

E�ects of CPU Interlock :

� Latch 'Load' data, set GRs for previous instruction, advance target number and result

data pipelines, advance o�set and space pipelines.

� Set SRs, CRs, and diagnose registers if MTSP, MTCTL or MTCPU respectfully.

Freeze Type : CPU Interlock

Number of states :

for LPA : 2

all other CPU Interlocks : 1

5.3.10 Refetch

When a branch instruction is executed, the CPU tries to get the branch address to the TLB

so that if a page-cross occurs, the ITLB lookaside bu�er can be updated in a single state. If

this is successful, the penalties are as listed in the next subsection. If the TLB (or data address

bus) is busy and the branch has a page-cross, the CPU must pay an extra 2-cycle penalty to

\refetch" the instruction translation from the DTLB into the LAB. This might occur if a page-

cross-branch is bundled with a preceeding load/store or if the branch occurred while a pending

data cache miss was being handled. This penalty is in additional to the normal LAB update

penalty (if any).

Freeze Type : Refetch

Number of states : 2

5.3.11 ITLB Lookaside Bu�er Update

The ITLB lookaside bu�er needs to update under the following circumstances: 1) Page crosses

due to branches in virtual mode, 2) Space changes in virtual mode, 3) Privilege changes in virtual

mode, 4) RFI instructions, 5) SSM, RSM, MTSM instructions (in case of a P-Bit change), 6)

ITLB Inserts or Purges in virtual mode, 7) MTCTL to CR8, CR9, CR12, CR13 and, 8) Page

Hewlett-Packard



36

crosses not due to branches (sequential execution). Some of these updates are overlapped with

other pipeline stalls or pipeline steps. All the pipeline stalls due to ITLB lookaside bu�er updates

which are not overlapped with other pipeline stalls are summarized in the following table.

Page Crosses, Space crosses, Privilege Crosses :

Due to BV, BE, BLE : 0 cycle penalty

Due to all other taken branches : 1 cycle penalty

(Regardless of whether it is predicted taken)

RFI (regardless of page cross etc.) : 1 cycle for each target (==>2)

SSM,MTSM,RSM : 1

TLB Insert or Purge in virtual mode : 1 cycle

MTCTL to PID : 1 cycle

Page Cross not due to taken branch : 1 cycle

5.3.12 ITLB miss (hardware handler)

When an entry does not exist in either the lookaside bu�er or the uni�ed TLB, the CPU will

attempt to handle the TLB-Miss in hardware. The CPU will read the PDIR entry (or a software

\cache" of entries) and insert the entry into the TLB if it hits. If the hardware handler hits

cache and the PDIR then the I-TLB miss incurs only a 11 cycle penalty. This 11 cycle penalty

includes updating the lookaside bu�er. More details on the hardware TLB handling mechanism

are given in the TLB chapter.

Freeze Type : ITLB lookaside buffer miss (Hardware Miss handler)

Number of States : 11 cycles plus possible cycles for one D-Cache Miss

5.3.13 Instruction Cache Miss

When an instruction fetch does not hit the on-chip instruction bu�er, the CPU will freeze in order

to check the o�-chip ICache. An on-chip-miss, o�-chip-hit will normally take 2 freeze cycles,

but this freeze will be for only 1-state if the prefetch (or preissue) mechanisms were already in

the middle of the fetch when the miss occurred. If the instruction is neither in the on-chip nor

o�-chip Icaches, then a fetch from memory must occur. An instruction fetch from memory looks

very similar to a data cache miss as explained above. The MIOC will return an ICache line

starting with the critical word �rst. The CPU will unfreeze as soon as the critical word arrives,

and will stream the instructions directly from the MIOC into the instruction decoders as they

are sent to the on-chip and o�-chip Icaches. The MIOC also implements memory to o�-chip

ICache prefetching in order to speed instruction fetches from memory.

Freeze Type : ICache miss

Hewlett-Packard



37

Number of States :

Hit to a prefetch or preissue just begun : 1 state

"Normal" off-chip ICache hit : 2 states

Hit to MIOC I-Prefetch Buffer : 6 states

"Normal" memory access : 9 states

Additional states may be incurred on successive instructions since a

doubleword is returned every 3 cycles.

5.4 Reading Reserved and Nonexistent bits

SAR[0:26]: NonExistent Bits; Read always returns zeroes.

CCR[0:23]: Reserved bits; Read always returns zeroes.

IPSW[0:4,24:26] Reserved bits; Read always returns zeroes.

IVA[22:31] Read Returns what is written, but is not used for trap vector

PID1-4[0:15]: Reserved bits; Read always returns zeroes.

SR1-7[0:15] : NonExistent Bits; Reads return zeroes

ISR[0:15] : Reads return zeroes

Reserved Registers : Reads return undefined values.

Writes to reserved bits or registers cause no harmful side-e�ects although software should

not rely on this.

Hewlett-Packard



38

Hewlett-Packard



39

Chapter 6

TLB

The PA7100LC CPU is equipped with a uni�ed instruction/data tlb. The TLB is organized as

64 fully associative page entries. Each page entry maps 4k bytes of virtual space. In addition to

the 64 page entries, the tlb contains 8 Block entries. Each block entry is capable of mapping a

contiguous virtual address space ranging in size from 128 pages (smallest) to 16K pages (largest).

Some size and alignment restrictions apply to block entries.

In addition to the Uni�ed TLB, PA7100LC contains a one-entry Instruction Lookaside bu�er

(LAB). The LAB generally contains a translation for the Instruction page that was most recently

accessed. If a hit is encountered in the LAB the UTLB is free to perform a Data translation

without incurring a penalty.

6.1 TLB organization

The TLB produces real addresses from virtual addresses whenever a memory or IO transaction

or instruction fetch occurs in virtual mode. TLB translations are accessed through a 36 bit

virtual page number (VPN) computed as follows:

VPN[0:35] = cat(SID[0:15],Page o�set[0:19]);

The translation process produces either a 20 bit real page number (RPN) or any of the TLB

traps speci�ed by the architecture.

To facilitate trap generation, the four architected Protection ID (PID) registers (CRs 8,9,12

and 13) are visible to the TLBs.

The TLB contains a 16 bit Diagnose Control register which assists a variety of test and

initialization functions.

Hewlett-Packard



40

6.1.1 Page entries

Each page entry stores and compares a 36 bit VPN which identi�es a single 4k page. A trans-

lation is stored for each entry which contains the 20 bit RPN, the architected PID (15 bits),

Access rights (7 bits) and E-ag (valid bit). Translations for data accesses additionally contain

the architected T, D, B, and U (uncached page) ags.

Each page entry can be individually locked out (ie. its hit comparator disabled) or locked in

(ie. excluded from consideration for replacement).

Insertion of a page entry is accomplished through the use of the architected IITLBA,IDTLBA

instructions. The TLB contains hardware which automatically selects an appropriate entry to be

the target for these instructions. The protection �elds (PID, AR and ags) for the target entry

are cleared (zeroed) by these instructions. Insertion of protection is accomplished through the

use of the architected IITLBP or IDTLBP instructions. Purging of translations is accomplished

through the use of the architected PITLB or PDTLB instructions. Execution of a PITLBE or

PDTLBE instruction serves to invalidate ALL page entries in a single instruction. PA7100LC

also has non-architected, faster-executing insert address/protection instructions. See the last

section of this chapter.

6.1.2 Block entries

Translations via block entries di�er from those via the normal page entries in two respects:

1. Each of these entries maps a minimum of 128 pages, thus the low seven bits of the VPN

are excluded from hit comparison (ie. not stored). The maximum space mapped by these

entries is 16K pages, thus seven additional bits of the VPN are optionally excluded from

hit comparison.

2. When a block entry hit is encountered, the 20 bit RPN is assembled by bypassing low

order bits of the VPN into the RPN corresponding to the bit positions that were excluded

from the VPN compare.

Thus for the smallest space mapped by a block entry (128pages = 512kbytes):

if virtual_address[0:28] = VPN[0:28] {hit on block entry}

then RPN[0:19] = cat(TRANS[0:12],VPN[29:35]) {assemble effective RPN}

For the largest space mapped by a block entry (16k pages = 64mbytes):

if virtual_address[0:21] = VPN[0:21] {hit on block entry}

then RPN[0:19] = cat(TRANS[0:5],VPN[22:35]) {assemble effective RPN}

Hewlett-Packard



41

Other legal space sizes include 256 pages, 512 pages, 1k pages, 2k pages, 4k pages, 8k pages

and 16k pages. Insertion of addresses and protection and the speci�cation of block sizes is

accomplished through pdc calls. The mechanisms provided by the CPU for use by this code are

discussed under the subtitle Diagnose Functionality. Normally, block entries are una�ected by

the architected Insert and Purge instructions.

6.2 TLB Page Replacement

The target entries for IITLBA and IDTLBA instructions are selected by a hardwired algorithm

resident in the TLB. When an IITLBA or IDTLBA is performed, one of the 64 page entries,

numbered from 0 to 63, is selected as the target for the insertion. The highest priority is given to

any entry whose VPN �eld matches the VPN being inserted, in order to avoid multiple mappings

of the same page. If no entry with a matching VPN is found, the lowest numbered entry which

is invalid (i.e., its protection �eld's E-bit is 0) is selected. If both of these attempts fail, then

the TLB must select a currently valid entry to replace. A "not-recently-used" selection is made

to determine the target in this case (ie. the lowest number entry that has the \used bit" clear is

replaced, or if all entries are \used", then entry 0 is replaced and all the \used" bits are cleared).

It is possible to partially shield an entry from being the target of a replacement. Each entry

contains, in addition to the architected contents, a one-bit �eld known as the lock-in bit. If this

bit in an entry is set, the hardware algorithm will only select that entry for replacement if its

VPN matches the VPN being inserted. The entry is then said to be locked in. It is also possible,

for initialization and test purposes, to PARTIALLY circumvent the hardware algorithm and

specify directly which entry is to be replaced during the next insertion, using a six bit pointer

to indicate the target entry. (A VPN match in a page entry will ALWAYS cause an insert or

purge to operate on that entry in addition to any entry pointed to by the diagnose register).

This function is known as diagnostic insertion. When this method of selecting the targets

for IITLBA and IDTLBA is in use, even locked-in entries may be selected for replacement.

Both locking entries in and explicitly designating the replacement target are done through the

diagnose functionality present in the TLB.

6.3 Diagnose Functionality

6.3.1 Diagnose Control register

A Diagnose Control register is de�ned for the TLB. Thus is a 16-bit register which is loaded via

Move to Diagnose instructions (see Diagnose Chapter for encoding). This diagnose register has

partial-read capability as shown below.

Hewlett-Packard



42

TLB: Diagnose register 8 (DR8[16:31])

bit feature description feature disabled value

16 r/w Force VPN Mismatch 0

17 r/w Inhibit Replacement 0

18 r/w Page Entry Force-Insert Disable 1

19-24 w Page Replacement Pointer don't care

25 r/w Page Entry LRU-Insert Disable 0

26 w Accelerated Failure mode 0

27 w Not Used don't care

28-30 w Block Entry Pointer don't care

31 r/w Block Entry Force-Insert Enable 0

Explanation:

DR8[16:17] effect

00 subsequently inserted addresses will be neither

locked in nor locked out.

01 Lock-in: Subsequently inserted addresses are

shielded from replacement unless they become the

targets of a diagnostic insertion or they match the

VPN of some future translation to be inserted.

11 Lock-out: Subsequently inserted addresses will

be forced to mismatch on every translation attempt.

10 Undefined operation will result.

DR8[18] When clear, subsequent insert instructions (IxTLBx) will

insert to the page-entry pointed to by bits 19:24 (AND

to any page-entry that has a SID-VPN match). Set to 1 for

normal operation.

DR8[19:24] 6-bit unsigned integer (bit 19 is msb). It indexes the

Page Entry targeted for inserts when DR8[18]=0.

DR8[25] While set, the normal LRU replacement algorithm that selects

page entries for replacement on IxTLBx instructions will be

disabled. Set this bit when you want to target a specific

page-entry or block-entry for insertion. Set to 0 for

normal operation.

DR8[26] Provided as a test feature for wafer screen.

Hewlett-Packard



43

CODE MUST GUARANTEE THIS BIT IS CLEARED (ZERO)

AT ALL TIMES.

DR8[28:30] 3-bit unsigned integer (bit 28 is msb). It indexes the

Block Entry targeted for inserts when DR8[31]=1.

DR8[31] When set, subsequent insert instructions (IxTLBx) will

insert to the block-entry pointed to by bits 28:30 (AND to

any page-entry that has a SID-VPN match). Set

to zero for normal operation.

6.3.2 Entry Lock-in

Each page entry contains a lock-in bit. This bit is loaded from the Inhibit Replacement control

bit in the control diagnose register (DR8[17]) whenever an address insertion to that entry occurs.

When this bit in an entry is set, the entry will only be selected for replacement if its VPNmatches

the VPN being inserted or if the entry is the target of a Diagnostic Insertion.

6.3.3 Entry Lock-out

Each page and block entry contains a lock-out bit. This bit is loaded from the Force VPN

Mismatch control bit in the control diagnose register (DR8[16]) whenever an insert address to

that entry occurs. When set, the e�ect of the lock-out bit is to force a VPN mismatch on

that entry. At system power-on, all 64 page entries and all 8 block entries are locked out.

Initialization code is required to clear all of the lock out bits and load the VPN in each entry

with a unique address.

It is important to make sure that for all locked out entries the lock-in bit is also set. Oth-

erwise, a locked out entry might be selected as the target of an insertion. As long as both

these bits are set in an entry, it will never be a target for replacement and it will never be used

during a translation. It is always possible to clear the lock bits for an entry using the Diagnostic

Insertion mechanism.

6.3.4 Diagnostic Insertion

Diagnostic Insertion provides a mechanism to explicitly designate, with a six-bit pointer indi-

cating a number between 0 and 63, which page entry will receive the next insertion. To use this

mechanism, the Replacement Pointer �eld (DR8[19:24]) in the control register should be set to

Hewlett-Packard



44

the integer index of the entry to be inserted to. In addition, the Page Entry Force-Insert Disable

bit (DR8[18]) should be set to '0', the Page Entry LRU-Insert Disable bit (DR8[25]) should be

set to '1', and the Block Entry Force Insert Enable bit (DR8[31]) should be set to '0'. The next

address insertion will occur to the indexed page entry (AND also to any page entry that has a

SID.VPN match to the address being inserted).

6.3.5 Insertion of Block TLB entries

Block TLB insertion is accomplished by pdc using a combination of diagnose write functionality

and architected Insert instructions. The block entries do not respond to the architected Insert

Address and Protection instructions, nor do they respond to Purge, Purge Entry or Broadcast

Purge, unless the Diagnose Control register has been previously loaded with a certain set of

values.

The block entry insertion process is explained by the following example:

To insert to block entry N (N=0..7)

� Ensure NO page entry has a SID.VPN match (even for INVALID entries).

� Set the Page Entry Force-Insert Disable bit to 1 (DR8[18])

� Set the Page Entry LRU-Insert Disable bit to 1 (DR8[25])

� Set the Block Entry Force-Insert Enable bit to 1 (DR8[31])

� Set the Block Entry Select �eld in the Diagnose register (DR8[28:30]) so that it points to

the Block entry slot to be inserted (N)

� Assemble a virtual address (= cat(space,o�set[0:19])) for any page within the block to be

mapped, then

� modify that Virtual address by overwriting the seven least signi�cant bits of the o�set

(o�set[13:19]) with the block size speci�er (see table this section, below)

� Assemble the Physical page No. (in GR[r][7:26])

� modify that Physical page No. by overwriting the seven least signi�cant bits of the o�set

(o�set[13:19]) with the block size speci�er (see table this section, below)

� Execute an Insert Address instruction

� Execute an Insert Protection instruction as with a page entry

� Reset the Diagnose register to its original (disabled) value.

Hewlett-Packard



45

vpn bits rpn bits block TLB size

mask[6:12] compared returned (in 4KB pages)

---------------------------------------------------------------

0000000 0-5 0-5 16,384 pages

1000000 0-6 0-6 8,192 pages

1100000 0-7 0-7 4,096 pages

1110000 0-8 0-8 2,048 pages

1111000 0-9 0-9 1,024 pages

1111100 0-10 0-10 512 pages

1111110 0-11 0-11 256 pages

1111111 0-12 0-12 128 pages

All other values of mask[6:12] are illegal.

Example:

Block TLB entry:

space[16:31] = "0001111100000110"

vpn[0:12] = "0111011001011"

rpn[0:12] = "0001001000110"

mask[6:12] = "1100000"

Translations:

space[16:31] offset[0:31] ---> real addr[0:31] (or TLB miss)

----------------------------------------------------------------

0x1f06 0x76584321 0x12584321

0x1f06 0x76ffffff 0x12ffffff

0x1f06 0x77777777 TLB miss (bit 7 of vpn)

0x1f16 0x76000000 TLB miss (bit 27 of space)

The diagnose register for an insert to block entry #4 should be:

0x00002049 Lockout = 0

Lockin = 0

Page Entry Force-Insert Disable = 1

Page Entry LRU-Insert Disable = 1

Accelerated Failure Mode = 0

Block Entry Pointer = 4

Block Entry Force Insert Enable = 1

A PxTLBE instruction WON'T invalidate the block TLB entries; just

the page entries.

Hewlett-Packard



46

A block entry may be purged in a similar manner: When DR8[18] = DR8[25] = DR8[31] = 1,

the block entry selected by DR8[28:30] becomes the target for subsequent Purge instructions.

Note that insertion of protection in block entries does not function in the same manner as in

page entries, which select the IDTLBP or IITLBP target through the VPN referenced in the

instruction. Block entries must have both protection and address inserted using their block

entry select bit (DR [28:30]). Block entries do not respond to Purge entry instructions. Note

also that page entries (even invalid ones) that have a matching SID.VPN will always respond

to insert or purge instructions, regardless of the setting of the diagnose register.

Probe and LPA instructions are essentially TLB translation accesses, and thus function the

same for block entries as for page entries.

6.4 Instruction Lookaside Bu�er

In addition to the 64 page entries and 8 block entries of the UTLB, there is a one-entry Instruc-

tion lookaside bu�er (LAB). The LAB is architecturally invisible but a�ects performance due

to penalties incurred to update the bu�er. These penalties are enumerated in the Performance

section of this ERS. The following description of the LAB is included as a qualitative description

of the implementation:

The LAB contains:

1. VPN 0:19

2. RPN 0:19

3. gateway privilege 30:31

4. tlb miss trap indication (1 bit)

5. tlb prot trap indication (1 bit)

In real mode operation the LAB is unused. However, hangs will be taken to update the LAB

(to save terms or make things simpler).

In normal virtual fetching the RPN is used to check for imisses, the VPN is used to check

for branches to new pages, the gateway privilege is used by the GATE instruction, and the trap

bits determine if ITLB traps are taken.

The following cases describe when the LAB is updated:

Case #1: Sequential page crossing

Hewlett-Packard



47

A page crossing is detected by looking at bits 20:29 of the o�set. If the bits are all 1's then a

hang will occur (called seqhang). The priority of seqhang is similar to ilock but it will execute

in parallel with ilock, refetch and math wait. It is a one state hang that is necessary to update

the LAB and check for any ITLB traps. The hang occurs on the Fstate of the instruction that

has 20:29 = that crosses the page). The seqhang is quali�ed by the PSW C-bit (only take the

hang if C-bit is set).

Case #2: BE, BLE, BV

During the Bstate of these instructions the LAB is updated. At that point the IHANG that

would normally be taken for these instructions is incurred.

Case #3: Branches (predicted right or predicted wrong)

These incur no penalty unless they are taken and the target is on a di�erent page than current

page (determined by checking the LAB's VPN). If taken to a di�erent page and the PSW-C bit

is set, there is one or two additional state penalty to update the LAB and check traps. The hang

for this appears to be the highest priority hang, but it can execute in parallel with all hangs

besides seqhang. A summary of the LAB-update hangs is given in the chapter on the pipeline.

Case #4: RFI

An RFI hangs for two states, takes a step, then hangs for two more. The LAB updates and

traps are checked for both RFI targets.

Case #5: P-bit changes

Whenever the P-bit changes the LAB has to be invalidated and restored from the UTLB. As a

result all SSM, RSM, and MTSM instructions will force a seqhang. They will not take default

hangs. Seqhang will be set regardless of the PSW C-bit.

Case #6: Control register changes

Whenever a MTCTL occurs to one of the PID registers the CPU will take an ILOCK hang.

During the ILOCK hang (if it is caused by a MTCTL) a seqhang will be forced (regardless of

the PSW C-bit).

Case #7: TLB instructions (and TLB broadcasts)

ITLB instructions will force a seqhang on the last state of their hang if the PSW C-bit is set

('1').

Any time the LAB is updated, ITLB traps (miss fault and protection) are checked. If either

Hewlett-Packard



48

of these traps occurs then the appropriate bit is set in the LAB and any instruction that accesses

the LAB will take the proper trap.

The architected itlb instructions are identical to the corresponding dtlb instructions:

IITLBA <--> IDTLBA

IITLBP <--> IDTLBP

PITLB <--> PDTLB

PITLBE <--> PDTLBE

6.5 Initialization and Test

At chip power on, all TLB entries are locked out. Code is responsible for clearing the lock out

bit before an entry can be used. This must be done by inserting a unique address, using the

diagnostic insertion mechanism, into each location whose lock out bit is to be cleared. Once the

entries have had their lock-out bits cleared and their VPN �elds set with unique addresses, the

subsequent uniqueness of addresses in each entry is guaranteed by the hardwired replacement

algorithm. Code must also initialize (clear) the lock in bits to enable replacement. All 64 E-bits

should also be cleared (via PxTLBE).

It is possible for initialization code to test the TLB through use of the Probe instructions.

Entries can be tested noninteractively by enabling them (clearing the lock-out bit) one entry

at a time. The diagnose replacement pointer may be handy for this purpose. Individual failed

entries can be mapped out of the TLB by setting both the lock out and the lock in bits. Once

initialization is complete, the control diagnose register should be loaded with a value such that

all the diagnose features are disabled.

6.6 TLB penalties

The processor must hang the pipeline to handle TLB inserts and purges. The various penalties

are summarized below in number of states:

IxTLBA,IxTLBP,PxTLB with PSW-C=0 2

with PSW-C=1 3

PxTLBE 2

Hewlett-Packard



49

6.7 Hardware TLB Miss Handler

6.7.1 Introduction

The hardware TLB miss handler on PA7100LC is designed to reduce the TLB miss penalty

while being low-cost to implement (in complexity and area). The hw TLB handler is invoked

on I-side and D-side translations that miss the on-chip TLB. The handler computes the address

of a PDIR entry based on the missing space and vpn. It then accesses the PDIR entry. The

PDIR entry is checked for three things:

1. Valid tag,

2. Matching tag, and

3. Reference bit = 1.

If the checks pass, the RPN and protection of the PDIR entry are inserted into the on-chip

TLB and the original access is re-translated.

If any of the checks fail, the handler will not insert the entry and the instruction will trap

to software. For DTLB misses only, a pointer to a PDIR entry is passed to the software TLB

handler so that it doesn't have to recompute the PDIR address. The pointer is passed in CR28.

CR28 will either have:

1. the address of the current PDIR entry, or

2. the address of the next PDIR entry.

Whether the current or next PDIR entry is passed will depend on the con�guration of the

diagnose register and which of the checks failed.

The hw TLB handler looks into a table of PDIR entries that will be referred to as the

hardware-visible table. For an inverted page table, the hw-visible table contains the �rst level

entries. For a forward mapped page table, the hw-visible table contains a "cache" of entries that

are distinct from the actual page tables (this mode is targeted for OSF). Note that these tables

must be stored in Little-Endian mode if the default Endian bit in diagnose register #0 is set.

There are bits in diagnose register #25 that disable the hw TLB handlers. If they are not

enabled, PA7100LC will take TLB miss traps without �rst activating the hardware handler.

Hewlett-Packard



50

6.7.2 PDIR Address Generation

The starting address of the hw-visible table is stored in DR24. The table must start on a 4KB

page boundary (i.e. bits 0-19 of DR24 are signi�cant). To generate the address of the PDIR

entry, the missing space and vpn are hashed together. Upper bits are masked o� depending on

the size of the hw-visible table to give an o�set into the table. This o�set is then merged with

DR24 to get a 32-bit real address that is used to access the cache (note: cache hashing is turned

o� on real addresses). Note that the PDIR is accessed in real-mode and the default Endian bit

in diagnose register #0 is used to control big/little Endian mode.

The base address is MERGED with the o�set (not added to the o�set). As a result software

must align the hw-visible table to a multiple of its size.

Pseudocode for address generation:

---------------------------------

spc : Missing space[16:31]

off : Missing offset[0:31]

dr24 : diagnose register #24 -- contains base address of table

dr25 : diagnose register #25 -- contains mask bits (based on table size)

extru off,19,20,off_tmp1 ; right shift vpn

zdep off_tmp1,27,20,off_tmp2 ; position vpn at 8:27

zdep spc,22,16,spc_tmp1 ; position space at 7:22

xor spc_tmp1,off_tmp2,hash_addr ; perform hash

mfdiag dr25,mask ; get mask value from diag reg

depi -1,31,12,mask ; don't mask bits 20:31

and mask,hash_addr,hash_addr ; mask out bits of hashed addr based

; on table size

mfdiag dr24,base ; get base addr from diag reg

depi 0,31,12,base ; only bits 0:19 are significant

or base,hash_addr,hash_addr ; merge in the base addr of the table

Hash_addr is a 32-bit real addr that is used to access the cache

and to check for a dmiss.

Hewlett-Packard



51

6.7.3 Structure of Hardware-Visible Table

This is what is assumed about the organization of the hw-visible table in order to implement

the hw TLB handler. Each 8 word line of the table holds two entries and is organized as shown

below. Bits reserved are indicated by S for software �elds, 0 for hardware �elds.

+-+-----------------------------+-----------------------------+

word0 tag1 |V| offset[0:14] | space[16:31] |

+-+-----------------------------+-----------------------------+

0 1 15 16 31

+---------+------------+-+------+-------------------------+---+

word1 prot1 | RSTDB | ACR(7) |U| 000 | access_id(15) | S |

+---------+------------+-+------+-------------------------+---+

0 4 5 11 12 13 15 16 30 31

+--------------+-------------------------------------+--------+

word2 rpn1 | SSS0000 | rpn[0:19] | SS000 |

+--------------+-------------------------------------+--------+

0 6 7 26 27 31

+-------------------------------------------------------------+

word3 next1 | real address of next pdir entry |

+-------------------------------------------------------------+

+-+-----------------------------+-----------------------------+

word4 tag2 |V| offset[0:14] | space[16:31] |

+-+-----------------------------+-----------------------------+

0 1 15 16 31

+---------+------------+-+------+-------------------------+---+

word5 prot2 | RSTDB | ACR(7) |U| 000 | access_id(15) | S |

+---------+------------+-+------+-------------------------+---+

0 4 5 11 12 13 15 16 30 31

+-------------+-------------------------------------+---------+

word6 rpn2 | SSS0000 | rpn[0:19] | SS000 |

+-------------+-------------------------------------+---------+

0 6 7 26 27 31

+-------------------------------------------------------------+

word7 next2 | real address of next pdir entry |

+-------------------------------------------------------------+

Hewlett-Packard



52

O�set bits 15-19 are implicit in the address of the PDIR entry and are not stored in the tag.

The hashing algorithm will provide an address that points to either word0 or word4 of a

line. If the line is not resident in cache the processor will bring it in from main memory (it

is required to be in main memory). The tag (either word0 or word4) is read, the valid bit of

the tag is checked to ensure that it is valid and the tag is compared to the missing vpn[0:14]

and space[16:31]. Also the reference bit (R-bit) of the protection word (either word1 or word5)

is checked to ensure that it is a "1". If all of the checks pass then the protection and rpn are

inserted into the on-chip TLB.

After the insert to the on-chip TLB is done, the access that had the TLB miss is re-translated

and any TLB traps resulting from the re-translation will occur (for example DATA MEM PROT TRAP).

If any of the checks fail then the CPU will trap to software with a DTLB MISS FAULT.

CR28 is used to pass information to the trap handler about the address of the PDIR. The table

below shows how CR28 is updated:

((R=1) and (V=1)) (Tag Match) DR25[29] DR25[30] | CR28 value

+---------------------------------------------------+--------------+

| False DC DC DC | current pdir |

| True False 0 DC | current pdir |

| True False 1 0 | next pdir |

| True False 1 1 | word3 of line|

+---------------------------------------------------+--------------+

current pdir : real addr of current pdir entry (points to word0 or word4)

next pdir : real addr of next pdir entry (this is word3 if we hashed to

word0 or word7 if we hashed to word4).

word3 of line : this is word3 regardless of whether we use first or second

entry in the line.

6.7.4 Diagnose Register Organization

Diagnose register #24 (write only).

+----------------------------------+------------+-----------------+

| base address of hw-visible table | ------ | dcache conf |

+----------------------------------+------------+-----------------+

0:19 20:23 24:31

The base address must be aligned to a boundary that is a multiple

of the size of the hardware visible table. This allows us to merge

in the base address and the table offset instead of doing an addition.

Hewlett-Packard



53

The dcache conf bits are explained in the diagnose chapter.

Diagnose register #25 (partial read capability - see DIAGNOSE chapter).

+------------------------------+--------+-----+---+---+---+---+---+

| P | ------ | mask | ------ | FP | - | I | U | N | D |

+------------------------------+--------+-----+---+---+---+---+---+

0 1:6 7:19 20:23 24:26 27 28 29 30 31

P -- Continuously latches the power-fail signal (read-only).

mask -- Effectively sets the size of the hw-visible table by

determining which bits come from the hashed address and

which bits come from diag reg #24 (base address for table).

mask[7:19] enables an "or" of base_addr[7:19] and hash_addr[7:19]

Example:

A "0" in mask[13] will set real_addr[13] = base_addr[13]

A "1" in mask[14] will set real_addr[14] = hashed_addr[14]

FP -- Sets the FP delay as explained in the diagnose chapter.

I -- Set to "1" to disable the ITLB hw handler, "0" to enable.

It is not set by power-on or reset but rather by PDC code.

U -- Set to "1" to enable the updating of CR28 with the next-pointer

if the tag was valid and didn't match the missing space/offset.

If set to "0", CR28 will always contain the address of the

entry in the hw-visible table (current pdir).

N -- Set to "1" to force the next pointer to always come from

word3. If set to "0" the next pointer will come from word3

if we use the entry in the even quadword or from word7 if

we use the entry in the odd quadword.

D -- Set to "1" to disable the DTLB hw handler, "0" to enable.

It is not set by power-on or reset but rather by PDC code.

Hewlett-Packard



54

The minimum size of the hw-visible table is 4Kbytes (256 PDIR entries).

The maximum size of the hw-visible table is 32Mbytes.

The mask field is set based on the table size as shown below:

table size entries mask[0:19]

------------------------------------------------

4 Kbytes 256 00000000000000000000

8 Kbytes 512 00000000000000000001

<etc>

32 Mbytes 2M 00000001111111111111

For every bit set in the mask field the corresponding bit in the base

address must be a "0".

6.7.5 Penalties

Type Penalty

--------------------------------------------------

DTLB hit and insert 11 states

DTLB trap to software 11 states

ITLB hit and insert 11 states

ITLB trap to software 11 states

6.7.6 Buddy Pages

PA7100LC will not implement buddy page handling. The decision was made based upon the

performance numbers and the estimated complexity that would be required for implementation.

6.7.7 Relied-upon Translations

If the hardware TLB handler inserts any entries to the on-chip TLB it must force a re-translation

of B-stage data access (if any) to ensure we don't violate the rules for relied-upon translations

outlined in the PA-RISC manual.

Hewlett-Packard



55

6.8 Implementation Speci�c Inserts

There are two new implementation speci�c instructions added to reduce the TLB miss penalty for

the software miss handler. These instructions use unde�ned minor opcode bits. The instructions

reduce the TLB miss penalty in two di�erent ways:

(1) They insert directly from control registers. For DTLB misses

ISR/IOR are used. For ITLB misses the front elements

of IIASQ/IIAOQ are used.

(2) They execute in fewer cycles than the regular TLB inserts.

The architected insert instructions are also implemented in order to be architecturally com-

pliant and also to provide easy-to-use inserts for code which does not need to be handcrafted

for performance.

Summary of instructions:

idtlbaf -- fast insert dtlb address (0 penalty states)

idtlbpf -- fast insert dtlb protection (1 penalty state)

iitlbaf -- fast insert itlb address (0 penalty states)

iitlbpf -- fast insert itlb protection (3 penalty states)

See the Appendix for instruction formats and software restrictions.

Hewlett-Packard



56

Hewlett-Packard



57

Chapter 7

Floating Point

7.1 Overview

PA7100LC contains 64 bit oating-point ALU, multiply, and divide/square root circuits and a

32x64 bit oating-point register �le.

The oating point unit implements the PA-RISC 1.1 architecture (version 11/90). In addition,

it implements the following product-speci�c features:

� Accelerated graphics clip tests

� Multiply and truncate

� Hardware underow mode

The latencies and issue rates of oating-point operations are in the table below. The �rst number

is the latency in cycles and the second number is cycles per instruction issue.

Single Double

Add/Subtract 2/1 2/1

Multiply 2/1 3/2

Divide 8/8 15/15

Square Root 8/8 15/15

Peak performance at 60 MHz is 120 megaops single precision and 60 megaops double precision.

The PA7100LC oating-point model number is x'0D. The revision for the �rst release is x'01.

Hewlett-Packard



58

7.2 Instruction Decoding Rules

7.2.1 Reserved-Op Exceptions

The reserved-op exception occurs on:

� A x'0C or x'0E instruction with a reserved or unde�ned sub-op:

{ class 0 subops 1,6,7

{ class 2 subops 2-7

{ class 3 subops 4-7

� A x'0E instruction, with a FMT code of b'11.

� A x'0E instruction other than XMPYU with bit 23 set (integer op).

� A XMPYU with bit 20 set (double precision).

Reserved-op exceptions are always reported through the unimplemented exception/trap rather

than an immediate assists exception trap. In other words, the trap handler will see the T bit

set and the o�ending instruction marked unimplemented in exception register 2.

7.2.2 Emulated Instructions

PA7100LC relies on software to emulate the following instructions:

� Any quad precision op

� Any FRND instruction

These will raise the unimplemented exception/trap. The trap handler will see the T bit set and

the o�ending instruction marked unimplemented in exception register 2.

A subroutine call may be much faster than the OS emulation routines.

7.2.3 Product-Speci�c Instructions

� FMPYCFXT is encoded as FMPYADD with zeroes in the ra �eld.

� Graphics clip tests are encoded in bits 27:31 of an FTEST.

For more information see the "Product-Speci�c Features" section.

Hewlett-Packard



59

7.2.4 FTEST look-alikes

The following are unde�ned:

� N bit set on a x'0E instruction.

� N bit set on a x'0C instruction other than FTEST (class 2, subop 1).

� N bit clear on an FTEST (x'0C, class 2, subop 1).

� Class 2, subop 1 (would-be FTEST) on a x'0E instruction.

7.2.5 Miscellaneous Unde�ned Instructions

The following are unde�ned:

� Any op which uses register 1, 2, or 3 as a source operand.

� Any op which uses register 0, 1, 2, or 3 as a result operand.

� FMPYCFXT,SGL when fp register 16L is nonzero.

� A x'0C instruction with a format code of 10.

� FCNVFF,SGL,SGL - this is treated as a FCPY,SGL.

� FCNVFF,DBL,DBL - this is treated as a FABS,DBL.

� COPR,0,0 if the most recent FP instruction was not an FSTD 0.

� COPR,0,0 if the next FP instruction is not an FSTD 0.

� FTEST with clip-test completer, if the most recent FP instruction was a COPR,0,0.

7.3 Unimplemented Exception/Trap

The only kind of exception generated by PA7100LC oating point is the unimplemented excep-

tion. It is always signaled with a delayed oating-point exception trap. The unimplemented

trap is raised instead of the overow, underow, division by zero, invalid and inexact traps.

The I, V, O, U and Z ags in the oating-point status register are never set due to an unimple-

mented trap.

In the lists below, operands are classi�ed as either norm, denorm, zero, inf, or NaN. Some of

the cases are marked with (D) or (!D). This means the exception only occurs when the D bit is

set or cleared, respectively.

The following conditions cause the unimplemented trap:

� Various:

{ Reserved-op or Emulated conditions (see above)

Hewlett-Packard



60

� FABS:

{ only the Reserved-op and emulated conditions (see above)

� FCPY:

{ only the Reserved-op and emulated conditions (see above)

� XMPYU:

{ only the Reserved-op and emulated conditions (see above)

� FADD:

{ input nan

{ +inf + -inf with invalid enabled

{ overow with overow enabled

{ inexact with inexact enabled

{ input denorm (!D) unless the other operand is inf

{ tiny result (!D)

{ tiny result with inexact enabled (D)

� FSUB:

{ input nan

{ +inf - +inf with invalid enabled

{ -inf - -inf with invalid enabled

{ overow with overow enabled

{ inexact with inexact enabled

{ input denorm (!D) unless the other operand is inf

{ tiny result (!D)

{ tiny result with inexact enabled (D)

� FCNV�:

{ input nan

{ overow with overow enabled

{ inexact with inexact enabled

{ input denorm (!D)

{ tiny result (!D)

{ tiny result with inexact enabled (D)

� FCNVxf:

{ inexact with inexact enabled

� FCNVfx:

{ input nan

{ input inf

{ input denorm (!D)

{ overow **

{ inexact with inexact enabled

� FCNVfxt:

Hewlett-Packard



61

{ input nan

{ input inf

{ input denorm (!D)

{ overow **

{ inexact with inexact enabled

� FCMP:

{ input signalling nan

{ input quiet nan with bit 31 of instruction set

� FMPY:

{ input nan

{ inf * zero and invalid enabled

{ inf * denorm and invalid enabled (D)

{ overow with overow enabled

{ inexact with inexact enabled

{ tiny result (!D)

{ tiny result with inexact enabled (D)

{ input denorm (!D) unless other operand is zero or inf

� FDIV:

{ input nan

{ inexact with inexact enabled

{ overow with overow enabled

{ denorm / denorm (!D)

{ denorm / norm (!D)

{ norm / denorm (!D)

{ inf / inf with invalid enabled

{ zero / zero with invalid enabled

{ zero / denorm with invalid enabled (D)

{ denorm / zero with invalid enabled (D)

{ denorm / denorm with invalid enabled (D)

{ denorm / zero with divz enabled (!D)

{ norm / zero with divz enabled

{ norm / denorm with divz enabled (D)

{ tiny result (!D)

{ tiny result with inexact enabled (D)

� FSQRT:

{ input nan

{ input negative norm and invalid enabled

{ input negative in�nity and invalid enabled

{ input negative denorm and invalid enabled (!D)

{ input positive denorm (!D)

{ inexact with inexact enabled

Hewlett-Packard



62

� FMPYADD:

{ union of multiply and add conditions

� FMPYSUB:

{ union of multiply and subtract conditions

� FMPYCFXT:

{ union of multiply and truncate conditions

** fcnvfx,dbl,sgl and fcnvfxt,dbl,sgl will raise the unimplemented exception when their operand

is equal to the largest representable negative integer, even though this is not strictly necessary.

When either operation of a multi-op instruction traps, neither operation writes its result and

no exception ags are set in the oating-point status register.

7.3.1 Overow Exception

The following conditions raise the overow exception provided that the unimplemented trap

does not occur. The O ag in the oating-point status register is set.

� FADD, FSUB, FCNV�, FMPY, FDIV, FMPYADD, FMPYSUB:

{ overow with overow disabled

� FMPYCFXT:

{ overow in multiply with overow disabled

7.3.2 Division by Zero Exception

The following conditions raise the division by zero exception provided that the unimplemented

trap does not occur. The Z ag in the oating-point status register is set.

� FDIV:

{ denorm / zero with divz disabled (!D)

{ norm / zero with divz disabled

{ norm / denorm with divz disabled (D)

7.3.3 Invalid Exception

The following conditions raise the invalid exception provided that the unimplemented trap does

not occur. The V ag in the oating-point status register is set. The result register is set to a

Hewlett-Packard



63

quiet NaN.

� FADD:

{ +inf + -inf with invalid disabled

� FSUB:

{ +inf - +inf with invalid disabled

{ -inf - -inf with invalid disabled

� FMPY:

{ inf * zero with invalid disabled

{ inf * denorm with invalid disabled (D)

� FSQRT:

{ input negative in�nity with invalid trap disabled

{ input negative norm with invalid trap disabled

{ input negative denorm with invalid trap disabled (!D)

� FDIV:

{ inf / inf with invalid disabled

{ zero / zero with invalid disabled

{ zero / denorm with invalid disabled (D)

{ denorm / denorm with invalid disabled (D)

7.3.4 Inexact Exception

The following conditions raise the inexact exception provided that the unimplemented trap does

not occur. The I ag in the oating-point status register is set.

� FADD, FSUB, FCNVFF, FCNVFX, FCNVFXT, FCNVXF,FMPY, FDIV, FSQRT, FMPYADD,

FMPYSUB, FMPYCFXT:

{ inexact and inexact disabled

� FADD, FSUB, FCNV�, FMPY, FDIV, FSQRT, FMPYADD, FMPYSUB, FMPYCFXT:

{ tiny result and inexact disabled (D)

7.3.5 Underow Exception

The following conditions raise the underow exception provided that the unimplemented trap

does not occur. The U ag in the oating-point status register is set.

� all operations: never

Hewlett-Packard



64

7.3.6 Exception Registers

The excepting op will be in exception register 2. PA-RISC 1.1 exception codes are used.

Exception registers 1, 3, 4, 5, 6, and 7 may be loaded or stored, but hardware will never place

an excepting op in them.

Exception register 2 is guarranteed to retain its contents as long as the T bit remains set and

continuing thereafter until a op is executed, or until it is explicitly cleared by software with a

load.

7.4 Product-Speci�c Features

PA7100LC has oating-point features which are product-speci�c (not part of PA-RISC 1.1).

Programmers who choose to take advantage of these features are warned that some older ma-

chines do not implement them and even future machines may not implement them. Behavior

on other machines will be unde�ned, meaning that even a trap for emulation is not guaranteed.

Except for Hardware Underow Mode, these features cannot be disabled.

7.4.1 Hardware Underow Mode

PA7100LC implements a quick hardware underow mode for oating-point operations. This

mode is enabled by setting bit 26 of the oating-point status register, called the "D" bit (for

Default Underow Trap Handler).

In hardware underow mode, operations which would normally signal the underow exception

will just return a zero result with no exception. Input denorms are treated as signed zeroes.

The underow ag is never set. The inexact ag and inexact exception are detected just as in

IEEE mode except that denormalized operands are treated as signed zeroes, and when a result

is ushed to zero the inexact ag is set (if inexact traps are enabled there will be an exception).

Note that when this mode is enabled, computations are not compliant with the IEEE oating-

point standard.

This mode does not a�ect the speed of oating point operations. It just saves the overhead of

a trap handler when there are denormalized operands or when an operation underows.

Note that FABS and FCPY are not a�ected by this mode. They do not ush denorms to zero.

Hardware underow mode is a product-speci�c feature.

Hewlett-Packard



65

7.4.2 Multiply and Truncate (FMPYCFXT)

FMPYCFXT,fmt rm1,rm2,tm ta

------------------------------------------------------------------

| x'06 | rm1 | rm2 | ta | 0 |f | tm |

------------------------------------------------------------------

6 5 5 5 5 1 5

This instruction is like FMPYADD except that instead of doing the add it performs an FCN-

VFXT,fmt,sgl on register ta and puts the resulting signed integer back into ta.

The convert always produces a 32 bit result. If the format is double then the result is placed in

the MSW (bits 0:31) of ta and the LSW of ta becomes unde�ned.

The single precision version of this instruction (fmpycfxt,sgl) is unde�ned if register 16L is

nonzero. So before using fmpycfxt,sgl you must load a zero into register 16L.

7.4.3 Graphics Clip Tests

Bits 10:20 of the oating-point status register serve two purposes. First, they are the model

and revision �elds set by the COPR,0,0 instruction as de�ned by the PA-RISC 1.1 architecture.

Second, when combined with bit 5 (the C bit) they form a 12 entry queue of compare results.

When a compare (FCMP) instruction completes, the queue is advanced as follows:

status[11:20] := status[10:19]

status[10] := status[5]

status[5] := FCMP result

Thus, bit 20 contains the result of the oldest compare, and bit 5 contains the result of the most

recent compare (consistent with its PA-RISC 1.1 de�nition as the C bit).

The queue can be stored to or loaded from memory like other bits of the status register. Obvi-

ously the queue will be destroyed by the COPR,0,0 instruction.

The FTEST instruction with no completer tests the C bit as it does in PA-RISC 1.1. Seven

new variations of FTEST are implemented.

Hewlett-Packard



66

FTEST,cmplt

-----------------------------------------------------------------

| x'0C | 0 | 0 | 1 | 0 | 2 | 0 |1 | cond |

-----------------------------------------------------------------

6 5 5 3 2 2 3 1 5

The new variations are intended for the "trivial accept" and "trivial reject" cases in 3D and

2D graphics clip testing. ACC6/ACC4/ACC2 may also be useful to check the results of several

previous compares with a single FTEST. For example,

FCMP; FCMP; FCMP; FCMP; FTEST,acc4; branch;

executes in 7 cycles, whereas

FCMP; FTEST; branch; FCMP; FTEST; branch;

FCMP; FTEST; branch; FCMP; FTEST; branch;

executes in 16 cycles (assuming the branches are usually nulli�ed).

The condition encodings are listed below with their conditions for nulli�cation and their sug-

gested completer mnemonics.

Encoding Condition for nullifying

Completer (bits 27:31) next instruction

none x'00 status[5] == b'1

,acc x'01 status[5,10:20] == b'000000000000

,acc8 x'05 status[5,10:16] == b'00000000

,acc6 x'09 status[5,10:14] == b'000000

,acc4 x'0D status[5,10:12] == b'0000

,acc2 x'11 status[5,10] == b'00

,rej x'02 status[5] == 1 && status[15] == 1

status[10] == 1 && status[16] == 1

status[11] == 1 && status[17] == 1

status[12] == 1 && status[18] == 1

status[13] == 1 && status[19] == 1

status[14] == 1 && status[20] == 1

,rej8 x'06 status[5] == 1 && status[13] == 1

status[10] == 1 && status[14] == 1

status[11] == 1 && status[15] == 1

status[12] == 1 && status[16] == 1

Hewlett-Packard



67

7.5 Performance Tuning

7.5.1 Notation

MinimumDistance is the number of cycles between two instructions necessary to avoid a pipeline

interlock. Consecutive instructions are 1 cycle apart. For example in without super scalar

execution this:

A

other instruction

B

would cause a 1 cycle penalty if there were a minimum distance of 3 between A and B. If there

were a minimum distance of 3 between A and B and a minimum distance of 6 between A and

C, then

A

B

other instruction

C

would cause a 3 cycle penalty: 2 cycles on B and 1 cycle on C. This is because penalties

associated with two or more constraints can be served in parallel.

7.5.2 Latencies

A Flop is one of the instructions shown in the table below. Loads, stores and FTESTs are not

ops. The table shows the Execution Time (latency cycles) for each op and which functional

unit is used to execute it.

Hewlett-Packard



68

Execution Functional

Flop Time Unit

FCPY,SGL/DBL 2 ALU

FABS,SGL/DBL 2 ALU

FADD,SGL/DBL 2 ALU

FSUB,SGL/DBL 2 ALU

FCMP,SGL/DBL 2 ALU

FCNV*,SGL/DBL 2 ALU

FMPYADD,SGL 2 ALU and MPY

FMPYSUB,SGL 2 ALU and MPY

FMPYCFXT,SGL 2 ALU and MPY

FMPY,SGL 2 MPY

FMPYADD,DBL 3 ALU and MPY

FMPYSUB,DBL 3 ALU and MPY

FMPYCFXT,DBL 3 ALU and MPY

FMPY,DBL 3 MPY

XMPYU 3 MPY (integer multiply)

FDIV,SGL 8 DIV

FDIV,DBL 15 DIV

FSQRT,SGL 8 DIV

FSQRT,DBL 15 DIV

In the tables that follow, N1 is the execution time of the �rst instruction.

These distances are preliminary and are subject to change during design. Of course the perfor-

mance cases would only be made worse in an extreme situtation.

7.5.3 Data Cache Contention Constraints

1st Instruction ST*,FSTW*,FSTD*

2nd Instruction LD*,ST*,FLD*,FST*

Minimum Distance 2 cycles

For the second instruction, LD* does not include LDIL or LDO since these "loads" do not

actually access the data cache.

Hewlett-Packard



69

7.5.4 Functional Unit Contention Constraints

1st Instruction FDIV or FSQRT

2nd Instruction *

Minimum Distance N1 cycles

1st Instruction XMPYU or FMPY,dbl

2nd Instruction *

Minimum Distance 2 cycles

This rule means that there is always a 1 cycle penalty for any double precision FMPY, a 7

cycle penalty for a single precision FDIV/FSQRT, and a 14 cycle penalty for a double precision

FDIV/FSQRT.

7.5.5 Data Dependency Constraints (Performance Cases)

1st Instruction FLD*

2nd Instruction Flop

Minimum Distance 2 cycles

The target of the load equals one of the sources of the op. (Increase the distance by 1 cycle if

the load is singleword singleword and the op's source is double precision.)

1st Instruction Flop

2nd Instruction Flop

Minimum Distance N1 cycles

The target of the �rst op equals one of the sources of the second op. (Increase the distance

by 1 cycle if the format is di�erent, i.e. sgl-dbl, dbl-sgl, int-fp, fp-int.)

1st Instruction FCMP

2nd Instruction FTEST

Minimum Distance 2 cycles

7.5.6 Dependency Constraints (Non-performance Cases)

1st Instruction FLD*

2nd Instruction FST*,FLD*

Minimum Distance 3 cycles

The target of the �rst load equals the target of the second load or source of the store.

Hewlett-Packard



70

1st Instruction FLD*

2nd Instruction Flop

Minimum Distance 3 cycles

The target of load equals a target of the op. Exception: If the load and op are bundled

together then the minimum distance is only 2 cycles.

1st Instruction Flop

2nd Instruction FLD*/FST* 0-3

Minimum Distance N1+1 cycles

1st Instruction FLD*/FST* 0-3

2nd Instruction Flop

Minimum Distance 4 cycles

1st Instruction FLDD*/FSTD* 0

2nd Instruction FLD*/FST*/FTEST

Minimum Distance 4 cycles

These are loads and stores of the status and exception registers.

7.5.7 Other Rules

If the �rst instruction is a load that su�ers a d-cache miss then add the latency of the miss to

the minimum distance.

The minimum distance may be shortened if one or both of the two instructions is nulli�ed. This

varies from case to case and can depend on other factors such as unrelated interlocks.

7.5.8 Example

This example is coded so there are no interlocks.

FLD* mem,r4

other

FADD,sgl r4,r4,r5 # 2 cycles away from load

FADD,sgl r7,r8,r9 # independent of 1st add

FMPY,sgl r5,r4,r6 # 2 cycles away from 1st add

FST* r6,mem #

other

FLD* mem,r10 # 2 cycles away from store

Hewlett-Packard



71

With dual issue this could execute in 7 cycles because the FMPY could bundle with the FST.

Note that the �rst FADD will be bundled with the "other" instruction right before it but you

don't gain any cycles because the FADD needs to be 2 cycles away from the FLD.

Hewlett-Packard



72

Hewlett-Packard



73

Chapter 8

Diagnose

8.1 Introduction

PA7100LC diagnose is di�erent than previous implementations. One of the largest changes is

the removal of the DOUBLE-DIAGNOSE rule. There are also changes to the diagnose registers,

the diagnose instructions, and the software restrictions regarding diagnose for PA7100LC. If you

plan to use PA7100LC diagnose instructions, please read this entire chapter.

The document is organized into the parts listed below:

DIAGNOSE REGISTERS: Lists all of the diagnose registers in the PCX-L CPU, gives their

formats, and a description of the functionality of each �eld/bit in the diagnose register.

DIAGNOSE INSTRUCTIONS: Contains a description of diagnose instructions and gives

their encodings for the PA7100LC processor.

SOFTWARE CONSTRAINTS: Describes software constraints above and beyond those

listed previously.

This diagnose chapter combined with the fault tolerance chapter should provide enough

information for an architectural review, system initialization, self test, and operating system

needs. Hopefully, this will meet the needs of everyone. If not, let us know.

8.2 Diagnose Registers

This section will describe each diagnose register and the sub�elds contained therein. A brief

description of the function of each sub�eld will be given.

Hewlett-Packard



74

8.2.1 Processor

There are many diagnose registers on the CPU chip:

� CPU Diagnose Register : Reg # 0. This is the main CPU diagnose register with bits for

miscellaneous uses.

� CPU Diagnose Register : Reg # 1. This is the architected Itimer Counter (not the

Compare register). The MTCPU #1 instruction provides a way to set to the Itimer

Counter. This helps reduce self-test time.

� UTLB Diagnose Register : Reg # 8.

� Hardware TLB Handler Address Base and Store Bu�er Con�guration: Reg #24.

� Hardware TLB Handler Con�guration: Reg #25.

� Debug-Mode Con�guration: Reg #26.

� Level-1 ICache Even Data Word: Reg #27. This provides a way to read and write the

high-word portion of the on-chip instruction cache.

� Level-1 ICache Odd Data Word: Reg #28. This provides a way to read and write the

low-word portion of the on-chip instruction cache.

� Level-1 ICache Tag Word: Reg #29. This provides a way to read and write the tag portion

of the on-chip instruction cache.

Hewlett-Packard



75

8.2.2 CPU Diagnose Register 0

The format of the CPU Diagnose Register 0 is shown below:

________________________________________________________________

| CPU DIAGNOSE REGISTER 0 |

|________________________________________________________________|

|________________________________________________________________|

| 0:31 |

-----------------------------------------------------------------

0: 5 Rev# (r) : CPU Revision Number

6 L2IHPMC (r/c): Level2 (off-chip) I-Cache Error Flag

7 L2IHPMC_DIS (r/w): Level2 (off-chip) I-Cache HPMC Disable (Mask)

8 L2DHPMC (r/c): Level2 (off-chip) D-Cache Error Flag

9 L2DHPMC_DIS (r/w): Level2 (off-chip) D-Cache HPMC Disable (Mask)

10 L1IHPMC (r/c): Level1 ( on-chip) I-Cache Error Flag

11 L1IHPMC_DIS (r/w): Level1 ( on-chip) I-Cache HPMC Disable (Mask)

12:15 L2PARERR (r/c): Level2 (off-chip) Cache Parity Error Indicators

16 STORE[0] (r/w): Scratch Space

17 PF_MASK (r/w): Power-fail trap mask

18 STORE[1] (r/w): Scratch Space

19 FAST_MODE (r): 0=fast, 1=slow

20 ISTRM_EN (r/w): Enable ICache streaming

21:22 DUAL_DIS (r/w): Disable Dual-Issue (superscalar execution)

23 ENDIAN (r/w): Use Little-Endian mode when taking a trap

24 SOU_EN (r/w): Stall-on-Use enable for Data Cache Misses

25 SHINT_EN (r/w): No-Fill on Miss Store Hints enable

26 IPREF_EN (r/w): L2 to L1 Instruction cache prefetch enable

27 DHASH_EN (r/w): Level2 (off-chip) D-Cache Hash Enable

28 IHASH_EN (r/w): Level2 (off-chip) I-Cache Hash Enable

29 L1ICACHE_EN (r/w): Level1 ( on-chip) I-Cache Enable

30 HIT (r) : Diagnose Cache Read Hit indication

31 PARERR (r) : Diagnose Cache Read Parity Error indication

(r) means Read-Only

(r/w) means Read-Write

(r/c) means Read-Clear (Clear by Moving '1' to it)

POWERUP values:

DR0[0:5] powers up with the revision number

DR0[6:15] powers up with undefined values

DR0[16:31] powers up to zero, except [22]=1

Hewlett-Packard



76

Descriptions of CPU Diagnose Bits:

RN: This holds the revision number of the CPU chip. For the �rst release of the CPU the

revision number is 0.

L2IHPMC: This bit is set whenever a Level2 (o�-chip) ICache Parity Error is detected. It

is quali�ed by the L2IHPMC DIS bit before causing a trap. This bit remains set until

software clears it in the HPMC handler. It is cleared only when a '1' is moved to this bit

position. Moving a '0' to this bit position does not change this bit.

L2IHPMC DIS: This bits disable taking an HPMC due to a Level2 (o�-chip) ICache Parity

Error. This is provided as a debug feature for early CPU releases. This is more accurately

called a mask bit because HPMCs are still collected and are held pending.

L2DHPMC: This bit is set whenever a Level2 (o�-chip) DCache Parity Error is detected. It

is quali�ed by the L2DHPMC DIS bit before causing a trap. This bit remains set until

software clears it in the HPMC handler. It is cleared only when a '1' is moved to this bit

position. Moving a '0' to this bit position does not change this bit.

L2DHPMC DIS: This bits disable taking an HPMC due to a Level2 (o�-chip) DCache Parity

Error. This is provided as a debug feature for early CPU releases. This is more accurately

called a mask bit because HPMCs are still collected and are held pending.

L1IHPMC: This bit is set whenever a Level1 (on-chip) ICache Parity Error is detected. It

is quali�ed by the L1IHPMC DIS bit before causing a trap. This bit remains set until

software clears it in the HPMC handler. It is cleared only when a '1' is moved to this bit

position. Moving a '0' to this bit position does not change this bit.

L1IHPMC DIS: This bits disable taking an HPMC due to a Level1 (on-chip) ICache Parity

Error. This is provided as a debug feature for early CPU releases. This is more accurately

called a mask bit because HPMCs are still collected and are held pending.

L2PARERR: These bits are the outputs of the four parity trees for the o�-chip caches. Each

bit updates independently. When set, a bit remains set until software clears it by moving a

'1' into the appropriate bit position. When a system observes o�-chip-cache parity errors,

these bits can be used to determine which group of RAMs is having a failure. The order

of these bits is as follows: bit[12]=even data parity, bit[13]=odd data parity, bit[14]=tag

parity, bit[15]=dirty parity.

STORE: These bits provide for temporary storage. One self-test convention for one of these

is to indicate when an HPMC is expected by self-test code rather than 'real'.

PF MASKH: When this bit is set to 1, power-fail traps are disabled.

FAST MODE: Read-only bit. 0 indicates running at full-speed.

Hewlett-Packard



77

ISTRM EN: Enable instruction cache streaming for instruction fetches from memory. Disable

only to debug prototype systems.

DUAL DIS: Disable Dual-Issue (superscalar execution). The following options are supported:

00=all bundles enabled, 01=all bundles except ldw/ldw,stw/stw are enabled, 10=only

op-non op bundles are enabled, 11=no bundles are enabled (single issue mode). Disable

only to debug prototype hardware.

ENDIAN: Set this bit to enable Little-Endian mode for traps and hardware TLB accesses (ie.

on traps, this bit is set into the PSW-E bit, and this bit is used in place of the PSW-E bit

for HTLB accesses).

SOU EN: Enable the "Stall-on-Use" optimization for D-Misses (both loads and stores). Dis-

able only to debug prototype hardware (also must disable ldw/ldw bundles).

SHINT EN: Enable Store Hints for store instructions at privilege 0. Disable only to debug

prototype hardware.

IPREF EN: Enable L2 to L1 instruction cache prefetching. Disable only to debug prototype

hardware.

DHASH EN: Enable Level2 (o�-chip) D-Cache Hashing (VPN and SID xoring) for improved

performance.

IHASH EN: Enable Level2 (o�-chip) I-Cache Hashing (VPN and SID xoring) is enabled for

improved performance.

L1ICACHE EN: Enable the Level1 (on-chip) instruction cache. Disable only to debug pro-

totype hardware or to operate in degraded mode after sensing a permanent cache error.

Disabling the L1 ICache does not automatically disable HPMC's from L1 ICache. Software

should set L1IHPMC DIS when clearing L1ICACHE EN. See the Software Constraints for

another important restriction.

HIT: This bit latches the Level-2 Cache Hit signal for the Read Diagnose L2 RAMs instructions.

There is no similar bit for the L1 cache. This bit is '1' for a hit. This bit aids in the

characterization of the Hit Compare path.

PARERR: This bit latches the Level-1 or Level-2 Cache Parity Error signal for the Read

Diagnose L1 or L2 RAMs instructions. This bit is '1' for a parity error. This bit aids in

the characterization of the parity trees.

8.2.3 CPU Diagnose Register 8

Diagnose Register #8, UTLB Diagnose Register, is described in the TLB chapter of this ERS.

Hewlett-Packard



78

8.2.4 CPU Diagnose Register 24

________________________________________________________________

| CPU DIAGNOSE REGISTER 24 |

|________________________________________________________________|

|________________________________________________________________|

| HTLB Handler Base | ----- | DCache Size Configuration |

| 0:19 | 20:23 | 24:31 |

|________________________________________________________________|

HTLB_BASE (w) : Address in Main Memory where the Hardware visible "PDIR"

table resides. See the TLB chapter.

DCACHE_SIZE (w): These bits need to be set in accordance with the data cache

size. Each bit which is a "1" in 24:31 will disable the DADH and

TADH D-Cache Address bits 12:19 respectively. ie. For a 4K data cache set all

bits to 1. For a 1M data cache set all bits to zero.

8.2.5 CPU Diagnose Register 25

________________________________________________________________

| CPU DIAGNOSE REGISTER 25 |

|________________________________________________________________|

|________________________________________________________________|

| POWF | ------ | HTLB Mask | ----- | FP Delay | -- | HTLB CNTL |

| 0 | 1:6 | 7:19 | 20:23 | 24:26 | 27 | 28:31 |

|_______________________________________________________________ |

POWFAIL (r): Set to 0 by hardware when powerfail signal is true.

HTLB_MASK (w): Sets the size of the hw-visible table for the hardware TLB

handler. See the TLB Chapter.

FP_DELAY (r/w): Sets the floating-point programmable delay line used

for low frequency chip characterization. For normal operation, these

bits must be set to 001 by PDC before the CCR is set and flops are executed.

HTLB_CNTL (r/w): See the TLB Chapter

28 -- ihtlb_dis

29 -- upd_cr28_current

30 -- next_wd3

31 -- dhtlb_dis

Hewlett-Packard



79

8.2.6 CPU Diagnose Register 26

Diagnose Register #26, for hardware debug, is described in the debug chapter of this ERS.

8.2.7 CPU Diagnose Register 27

_______________________________________________________________

| CPU DIAGNOSE REGISTER 27 |

|_______________________________________________________________|

|_______________________________________________________________|

| Even (high-word) data |

| 0:31 |

|______________________________________________________________ |

Diagnose Register 27, in the Level1 (on-chip) ICache is actually 2

different registers. Moves to this register set into one of the the ICache

write latches to prepare for a Level1 ICache diagnose write. Moves

from this register read one of the Level1 ICache read latches to complete

a Level1 ICache diagnose read operation.

EvenData (r/w): data to/from the even word of the Level1 (on-chip) ICache

8.2.8 CPU Diagnose Register 28

_______________________________________________________________

| CPU DIAGNOSE REGISTER 28 |

|_______________________________________________________________|

|_______________________________________________________________|

| Odd (low-word) data |

| 0:31 |

|______________________________________________________________ |

Diagnose Register 28, in the Level1 (on-chip) ICache is actually 2

different registers. Moves to this register set into one of the the ICache

write latches to prepare for a Level1 ICache diagnose write. Moves

from this register read one of the Level1 ICache read latches to complete

a Level1 ICache diagnose read operation.

OddData (r/w): data to/from the odd word of the Level1 (on-chip) ICache

Hewlett-Packard



80

8.2.9 CPU Diagnose Register 29

_______________________________________________________________

| CPU DIAGNOSE REGISTER 29 |

|_______________________________________________________________|

| FPDATA | FPTAG | STEER[0:7] | RPN[0:19] | QPAGE[20:21] |

| 0 | 1 | 2:9 | 10:29 | 30:31 |

|_______________________________________________________________|

Diagnose Register 29, in the Level1 (on-chip) ICache is actually 2

different registers. Moves to this register set into one of the the ICache

write latches to prepare for a Level1 ICache diagnose write. Moves

from this register read one of the Level1 ICache read latches to complete

a Level1 ICache diagnose read operation.

Note: This register has 1 bit that is negative true; even_frih is inverted!

FPDATA/FPTAG (r/w): Parity bit for the doubleword of instructions or tag

(tag := STEER + RPN + QPAGE) in the accessed location of the Level1 ICache.

For reads, this is the bit read from the ICache (note that the Level1 ICache

computes even parity). For writes, if this bit is `1', the result of the

parity tree will be flipped, causing a parity error to be seeded into the

Level1 ICache.

STEER[0:7] (r/w): Predecoded steering bits for the accessed location of the

Level1 ICache. For writes, it is up to the code-writer to generate this

bits correctly to correspond with the data in DR27 and DR28.

The bits are as follows:

[0] even_rih (positive true) even instruction must go to RIH

[1] even_frih (negative true) even instruction must go to FRIH

[2] even_lih (positive true) even instruction must go to LIH

[3] even_flex (positive true) even instruction can go to RIH or LIH

[4] odd_rih (positive true) odd instruction must go to RIH

[5] odd_flex (positive true) odd instruction can go to RIH or LIH

[6] odd_lih (positive true) odd instruction must go to LIH

[7] odd_frih (positive true) odd instruction must go to FRIH

RPN[0:19] (r/w): The real-page-number associated with the accessed location

of the Level1 ICache. Note that the VALID bit is encoded in this field (ie.

to mark an entry invalid, set the upper 4 bits to `F' (I/O space)).

QPAGE[20:21] (r/w): Quarter page - the two high-order bits of the page offset

of the address corresponding to the accessed location in the Level1 ICache.

Hewlett-Packard



81

Since the architected page size is 4KBytes, and the Level1 ICache is only

1KBytes, it is necessary to keep bits 20:21 of the virtual/real address in

the Level1 cache for full address compares.

Hewlett-Packard



82

8.3 Diagnose Instructions

The PCX-L diagnose instructions and their encodings are described below.

8.3.1 Move To Diagnose Register

� Move To CPU Diagnose (MTCPU)

0 5 6 10 11 15 16 18 19 26 27 31

05 t x 0 code 0

Figure 8.1: Move To Diagnose Format

MTCPU t=DiagTarget# x=GRSource# code= 12

The contents of General Register x is moved to CPU Diagnose Register t. There are no

Coprocessor or MIOC diagnose registers. Not all diagnose register bits can be a�ected by a

Move To Diagnose Instruction because some diagnose register bits are read-only. These cases

are identi�ed in the section describing the Diagnose Registers.

The HPMC bits in CPU Diagnose Register #0 behave di�erently than other diagnose bits.

A Move To Diagnose instruction with a '1' value of GR[x] for these bit positions causes the

corresponding bit to be reset while a '0' value leaves the bit unchanged. This allows MTCPU

to DR#0 without changing the value of these error bits.

8.3.2 Move From Diagnose Register

There are two instructions of this type:

� Move From CPU Diagnose via internal CH bus (MFCPU C)

� Move From CPU Diagnose via internal TH bus (MFCPU T)

0 5 6 10 11 15 16 18 19 26 27 31

05 r t ch 0 code t th

Figure 8.2: Move From Diagnose Format

MFCPU_C r=DiagReg# t_ch=GR# t_th=0 code= 30

MFCPU_T r=DiagReg# t_ch=0 t_th=GR# code= a0

Hewlett-Packard



83

The contents of Diagnose Register r is moved to a General Register. The GR is speci�ed by

t ch or t th for MFCPU C and MFCPU T, respectively. There are two \avors" of MFCPU in

order to make the design easier. Diagnose registers 0,8 are the only ones that uses MFCPU C.

Diagnose registers 25,27,28,29 use MFCPU T. Diagnose registers 1,24,26 cannot be read. Not

all diagnose register bits in each register can be a�ected by a Move From Diagnose Instruction

because some diagnose register bits are write-only. These cases are identi�ed in the section

describing the Diagnose Registers. There are no Coprocessor or MIOC diagnose registers.

8.3.3 TOC and GR Shadow Diagnose Control

� TOC Enable (TOC EN)

� TOC Disable (TOC DIS)

� Set GR shadow registers from corresponding GRs (GR SHDW)

� Set GRs from corresponding GR shadow registers (SHDW GR)

0 5 6 10 11 15 16 18 19 26 27 31

05 0 0 0 code 0

Figure 8.3: TOC and GR-SHADOW Format

TOC_EN code= 50

TOC_DIS code= 52

SHDW_GR code= d0

GR_SHDW code= d2

The TOC EN (TOC Enable) and TOC DIS (TOC Disable) instructions enable or disable the

taking of a TOC. They do not a�ect collecting the TOC condition, they merely mask the TOC

trap in the same manner that the PSW-M bit masks HPMC trap.

The GR SHDW instruction causes GR's 1,8,9,16,17,24,25 to be set into their corresponding

shadow registers. The SHDW GR instruction causes these shadow registers to be set into their

corresponding GR. These 2 instructions must be preceeded by 2 sync instructions to guarantee

no stall-on-use or bypass cases colliding with the gr to/from shadow move.

RESTRICTION: A \sync" instruction should precede these instructions to separate them

from any preceding loads, stores, or ushes.

Hewlett-Packard



84

8.3.4 Diagnose Read O�-chip (Level2) Cache RAMs

There are �ve instructions of this type:

� Diagnose Read Level2 Instruction Data (RI2D)

� Diagnose Read Level2 Instruction Tag (RI2T)

� Diagnose Read Data Data (RDD)

� Diagnose Read Data Tag (RDT)

� Diagnose Read Data Data Virtual and Latch DTLB Diagnose (RDTLB)

0 5 6 10 11 15 16 17 18 19 26 27 31

05 b 0 s 0 code t

Figure 8.4: Diagnose Read O�-chip RAMs Format

RI2D b=address_base s=don't care t=GRTarget# code=62

RI2T b=address_base s=don't care t=GRTarget# code=6a

RDD b=address_base s=don't care t=GRTarget# code=e2

RDT b=address_base s=don't care t=GRTarget# code=ea

RDTLB b=address_base s=address_space t=GRTarget# code=e6

RI2D, RI2T, RDD, RDT generate a \real-mode" address from GR[b]. RDTLB generates a

\virtual-mode" address from GR[b] and the Space ID identi�ed by the \s" �eld.

if s==0 Then SID<--SR[GR[b]{0..1} + 4

else SID<--SR[s].

ie. Normal Space register encoding

RI2D/RDD/RDTLB set the addressed o�-chip Instruction or Data Cache data word into

GR[t] (even if it misses). The address used by these instructions is a word address. Note that

these instructions always return data from the RAM's, never from the store bu�er. This implies

that a WDD-RDD sequence may not work as expected, but a WDD-SET TAG-WDT-RDD

sequence WILL work as expected.

RI2T/RDT set the addressed o�-chip Instruction or Data Cache tag, tag parity, Dirty bit,

Dirty Parity, and the two data parity bits into GR[t] according to the format given in Figure 8.5.

The address used by this instruction is a double-word address. The \Arb enable" bit will be

explained in the section covering diagnose RAM writes.

Hewlett-Packard



85

0 19 20 21 22 23 24 25 26 31

RPN Dirty Dirty par Tag par Data par 0 Data par 1 Arb enable unused

Figure 8.5: Diagnose Read/Write O�-chip RAMs - Tag Format

RDTLB forces DTLB translation to be enabled while forcing all DTLB traps to be false.

This may be useful for testing the UTLB. The RPN used for calculating \cache hit" is the RPN

from the UTLB and the address issued to the D-Cache is hashed.

All Diagnose Read RAMs instructions other than RDTLB send a real mode RPN to hit-

compare and do not hash the cache address.

CPU Diagnose Register #0 latches the O�-chip Cache Hit and Parity Error signals for the

diagnose read access. The CPU will never service a Cache Miss which is signaled during a

Diagnose Read O�-chip RAMs instruction.

In normal operation Tag parity is encoded over the twenty RPN bits, Dirty parity is encoded

over the one Dirty bit, Data[0] parity is encoded over the most signi�cant word of D-Cache data,

and Data[1] parity is encoded over the least signi�cant word D-Cache data.

Cache Parity Errors signalled during Diagnose Read O�-Chip RAM instructions WILL cause

HPMCs unless the PSW-M bit is set or the appropriate bit of Diagnose register #0 is set (bit

7 or 9). ie. Such a cache parity error will set bit 6 or 8 of the CPU Diagnose register #0 and

this bit will cause an HPMC as soon as the M-bit is clear and DR0 bit 7 or 9 is 0. If an HPMC

is not desired then bit 7 or 9 of DR0 should be set (or the PSW-M bit) when executing this

instruction and bit 6 or 8 of CPU Diagnose register #0 should be cleared after executing these

instructions.

The cache address for Diagnose Read O�-chip RAMs instructions is NOT latched in any

processor register.

If the instruction traps, no diagnose register will be set (except possibly the L2 parity and

hit bits of CPU diagnose register 0) and no GR will be set.

RESTRICTION: A \sync" instruction should precede a sequence of diagnose read/write

o�-chip cache instructions to separate them from any preceding loads, stores, or ushes.

8.3.5 Diagnose Write O�-chip (Level2) Cache RAMs

There are �ve instructions of this type:

� Diagnose Write Level2 Instruction Data (WI2D)

Hewlett-Packard



86

� Diagnose Write Level2 Instruction Tag (WI2T)

� Diagnose Write Data Data (WDD)

� Diagnose Write Data Tag (WDT)

� Diagnose Set Tag (SET TAG)

0 5 6 10 11 15 16 18 19 26 27 31

05 b x 0 code 0

Figure 8.6: Diagnose Write Instruction RAMs

WI2D b=address_base x=GRsource# code=72

WI2T b=address_base code=7a

WDD b=address_base x=GRsource# code=f2

WDT b=address_base code=fa

SET_TAG x=GRsource# code=42

These instructions are similar to the corresponding Diagnose Read O�-Chip Rams instruc-

tions except that the information goes from the cpu general registers into the RAMs. The GR

is speci�ed by the x �eld of these instructions.

WI2D/WDD will write GR[x] into the addressed single word o� the O�-Chip instruction or

data cache RAMs.

These instructions are best used only in the following sequences: For o�-chip instruction

writes: WI2D, SET TAG, WI2T. For o�-chip data writes: WDD, SET TAG, WDT.

WI2D or WDD may be used by themselves only if correct parity is to be encoded and if

only data values (ie. not tags) need to be written. Since WI2D and WDD use the CPU's store

bu�er, the last WI2D or WDD in a sequence will not get written out to RAMs until a subsequent

store, SET TAG/WI2T, or SET TAG/WDT is executed. We HIGHLY recommend following

all sequences of WI2D with SET TAG/WIT and all sequences of WDD with SET TAG/WDT

as shown in the usage hints of this chapter.

WI2D/WDD will encode correct parity with the data word written to the cache, but this par-

ity can/will be over-written by a subsequent SET TAG and WI2T/WDT sequence if arbitrary

parity is selected.

SET TAG and WI2T/WDT will write the tag bits, tag parity, dirty bit, dirty parity into

cache. They will also write the parity bit for the immediately preceding WI2D or WDD data

word if arbitrary parity is selected. The address used by WI2T/WDT is a doubleword address.

WI2T/WDT will encode correct parity for the tag and data if the \Arb enable" bit is false (See

Figure 8.5). If the \Arb enable" bit is true, then the tag and data parity bits are taken from

Hewlett-Packard



87

the corresponding bit positions in the cpu general register (dirty parity comes from the general

register regardless of Arb enable). Since arbitrary parity can be written for the preceding WI2D

or WDD, there are 2 data parity bits. If the WI2D/WDD address was even, Data Par 0 is

written, else Data Par 1 is written. Perhaps it would be easiest to always duplicate the desired

arbitrary data parity into both bits. The parity bits are active high (ie. To set a parity bit to

'1', the corresponding GR bit should be '1').

In normal operation Tag parity is encoded over the twenty RPN bits, Dirty parity is encoded

over the one Dirty bit, Data[0] parity is encoded over the most signi�cant word of D-Cache data,

and Data[1] parity is encoded over the least signi�cant word D-Cache data. "Correct" parity

means even parity for data and tags of the o�-chip cache RAMs, and is odd parity for the dirty

bit.

Cache Parity Errors signalled during Diagnose Write O�-Chip RAM instructions WILL also

cause HPMCs unless the PSW-M bit is set or bit 9 or 11 of CPU Diagnose register #0 is set

(as explained in the Diagnose Read section).

RESTRICTION: SET TAG must be immediately followed by WI2T or WDT, with no traps

occurring between them.

RESTRICTION: For a diagnose tag write (SET TAG/WI2T or SET TAG/WDT) to work

properly, it should be preceded by a WI2D or WDD to the same doubleword address with no

traps, loads, stores, ushes, or other diagnose instructions in between them.

RESTRICTION: A \sync" instruction should precede a sequence of diagnose read/write

o�-chip cache instructions to separate them from any preceding loads, stores, or ushes.

8.3.6 PA7100LC o�-chip cache diagnose usage hints

; ----------------------------------------------------------------------------

; Off-Chip Cache Read / Write RAMs

; b - base reg for reads or writes

; t - target reg for reads

; x - source reg for writes

; RDTLB uses a virtual address, all others use a real address

; RDTLB can be used to test the on-chip UTLB

; ----------------------------------------------------------------------------

; To read a tag from Level2 cache, use RDT or RI2T

; To read a 32-bit data value from Level2 cache, issue 1 RDD or RI2D

; To read a 64-bit data value from L2 cache,

; issue 2 RDD or 2 RI2D instructions with appropriate "word addresses"

;

; To write a value to Level2 cache, it is STRONGLY recommended to

Hewlett-Packard



88

; write both a data value and a tag value. The correct sequence is

; WDD, SET_TAG, WDT. The WDD instruction sets a 32-bit data value and

; cache index into the store buffer, The SET_TAG instruction sets the

; supplied tag value into a "store buffer-like" register. The WDT

; instruction forces the store buffer and "store buffer-like" register

; to be written to the data cache. Note that if the cache index for

; WDD and WDT do not match, you will get some pretty wild (random)

; results!

;

; When using SET_TAG in the above sequence, the user has the option of

; enabling encoded or arbitrary parity. If arbitrary parity is enabled, then

; the parity written for the tag and dirty bit AND the immediately

; preceding data WORD is written to cache along with the tag and data.

; If arbitrary parity is not enabled, then correct parity is encoded

; by the hardware for the tag/data words (dirty parity is never encoded

; by the hardware for SET_TAG).

;

; To write a 32-bit data value and the tag, use WDD, SET_TAG, WDT

; or WI2D, SET_TAG, WI2T

;

; When testing the cache RAMs, it is possible to have multiple WDD or RDD

; instructions in a row. Thus, you could write a word, double-word, or

; entire cache line (8 words), before writing the tag with SET_TAG/WDT.

; ie. testing a doubleword.....

; addi 0,0,r1

; WDD(r1, r10)

; addi 4,r1,r1

; WDD(r1, r11)

; SET_TAG(r20)

; WDT(r1)

; addi 0,0,r1

; RDD(r1, r10)

; addi 4,r1,r1

; RDD(r1, r11)

; RDT(r1, r20)

; <check the data values as appropriate>

;

; Note that in this double-word example, arbitrary parity could be written

; only for the odd-data-word and the tag. The even data word would always

; have good (encoded) parity.

; ----------------------------------------------------------------------------

;

Hewlett-Packard



89

8.3.7 Diagnose Read/Write On-chip (Level1) Cache RAMs

There are two instructions of this type:

� Diagnose Read Level1 (on-chip) Instruction Cache (RI1)

� Diagnose Write Level1 (on-chip) Instruction Cache (WI1)

0 5 6 10 11 15 16 17 18 26 27 31

05 b 0 0 code 0

Figure 8.7: Diagnose Read/Write Level1 ICache RAMs Format

RI1 b=0 (address must be in IIAOQR) code=40

WI1 b=address_base code=70

These instructions read or write diagnose registers 27,28,29 to or from the Level1 (on-chip)

instruction cache. To read or write the Level1 instruction cache, software must �rst disable it

by writing a \0" to the L1ICACHE EN bit in diagnose register 0 with a MTDIAG instruction.

Then to read the Level1 ICache, software must execute a RI1 instruction to get the data into the

diagnose registers, then execute MFDIAG T instructions to load any/all of diagnose registers

27,28,29 into general registers. To write the Level1 cache, software must �rst execute 3 MTDIAG

instructions to load each of the diagnose registers 27,28,29 and then software must execute a

WI1 instruction to write all 3 diagnose registers simultaneously into the Level1 ICache. The

Level1 ICache computes even-parity for both parity trees (data and tag). See the Diagnose

Register section to see the format of registers 27,28,29.

For RI1, the address used to index the Level1 cache is the address found in IIAOQR (control

register 18). Since hardware automatically updates CR18 when PSW-Q=1, this implies that

PSW-Q must be 0 before executing \MTCTL x,18" and \RI1". For WI1, the address used to

index the Level1 cache is contained in GR[b]. Since the architected page size is 4 Kbytes and

the Level1 ICache is only 1 KBytes, the generated address can always be considered as a \real"

address. No address hashing logic exists on the Level1 ICache.

The on-chip instruction cache stores an RPN, steering bits, etc for every doubleword. Thus,

it has a 2-word line size. Level1 ICache misses and Level2 to Level1 prefetching occurs on a

2-word basis. But for FIC/FICE we ush an 8-word line from both on-chip and o�-chip ICache.

Therefore, the on-chip ICache is always a subset of the o�-chip ICache, and PDC can report a

32-byte ICache line size.

CPU Diagnose Register #0 latches the On-chip Cache Hit and Parity Error signals into the

HIT and PARERR bits for the diagnose read access. The CPU will never service a Cache Miss

which is signaled during an RI1 instruction. DR0 also updates the L1IHPMC bit for RI1/WI1

Hewlett-Packard



90

instructions. Therefore, software should set the L1IHPMC DIS bit in DR0 to prevent HPMC's

while testing the on-chip ICache.

RESTRICTION: A \sync" instruction should precede a diagnose reads and writes of the L1

cache to them from any preceding loads, stores, or ushes.

8.3.8 PA7100LC on-chip cache diagnose usage hints

; ----------------------------------------------------------------------------

; On-Chip Instruction Cache Read / Write RAMs

; b - base reg for reads or writes

; For write, the address is specified in register GR[b]

; For reads, PSW-Q must be 0 and the address must first be

; placed in IIAOQR (control reg 18)

; The data must be read/written to/from 3 separate diagnose registers

; DR27 - even (high) data word

; DR28 - odd (low) data word

; DR29 - tag [RPN, parity, predecode, quarter page index] (see ERS)

; ----------------------------------------------------------------------------

; all Level1 cache diagnose read/writes must occur with the ICACHE_EN bit

; in CPU DR0 cleared so the Level1 cache is disabled from normal reads/writes

; To read an entry from Level1 cache,

; use MTCTL, RI1, MFDIAG27, MFDIAG28, MFDIAG29

; To write an entry from Level1 cache,

; use MTDIAG27, MTDIAG28, MTDIAG29, WI1

;

Hewlett-Packard



91

8.3.9 PA7100LC diagnose instruction encodings

|--------------------------------------------------------

| Instruction | | Opcode Extension |

| | hex | binary |

| | 19:26 | 19 | 20:22 | 23 | 24 | 25 | 26 |

|--------------|-------|----|-------|----|----|----|----|

| MTCPU | 12 | X | 001 | X | X | 1 | X |

| MFCPU_T | a0 | 1 | 010 | X | X | 0 | X |

| MFCPU_C | 30 | 0 | 011 | X | X | 0 | X |

| TOC_EN | 50 | 0 | 101 | X | X | 0 | X |

| TOC_DIS | 52 | 0 | 101 | X | X | 1 | X |

| SHDW_GR | d0 | 1 | 101 | X | X | 0 | X |

| GR_SHDW | d2 | 1 | 101 | X | X | 1 | X |

| RDD | e2 | 1 | 110 | 0 | 0 | 1 | X |

| RDTLB | e6 | 1 | 110 | 0 | 1 | 1 | X |

| RDT | ea | 1 | 110 | 1 | 0 | 1 | X |

| RI2D | 62 | 0 | 110 | 0 | 0 | 1 | X |

| RI2T | 6a | 0 | 110 | 1 | 0 | 1 | X |

| RI1 | 40 | 0 | 100 | 0 | 0 | 0 | X |

| WDD | f2 | 1 | 111 | 0 | 0 | 1 | X |

| WDT | fa | 1 | 111 | 1 | 0 | 1 | X |

| WI2D | 72 | 0 | 111 | 0 | 0 | 1 | X |

| WI2T | 7a | 0 | 111 | 1 | 0 | 1 | X |

| WI1 | 70 | 0 | 111 | 0 | 0 | 0 | X |

| SET_TAG | 42 | 0 | 100 | X | 0 | 1 | X |

|--------------|-------|----|-------|----|----|----|----|

bit 19: 0=instr 1=data

bit 20: 0=no_diag_hang 1=diag_hang

bit 22: 0=write 1=read

bit 23: 0=data 1=tag

bit 24: 0=real 1=virtual

bit 25: 0=on_chip_cache 1=off_chip_cache

X indicates reserved bit (assume X==0).

;Engineers in ESL have set up a macro file for diagnose instructions for PA7100LC.

;Users are STRONGLY encouraged to use this macro file when coding diagnose

;instructions for PA7100LC. Contact us for an electronic copy of this file.

;We also have macros for cache hint, and the implementation specific

;instructions.

Hewlett-Packard



92

8.4 Software Constraints

This section lists software restrictions which were not mentioned in earlier sections or which

are repeated in case you missed it earlier. This is not a complete list of restrictions however.

PLEASE READ THIS.

� Diagnose Instructions do NOT need to come in PAIRS. Previous PA-RISC processors had

this requirement, BUT PA7100LC DOES NOT! Each single diagnose instruction will be

executed independently, and they CAN be nulli�ed.

� Diagnose Instructions must not be immediately followed by RFI or RFIR.

� A \sync" instruction should precede a sequence of diagnose instructions (except for MTCPU,

MFCPU T, and MFCPU C) to separate them from any preceding loads, stores, or ushes.

(This is a change from the original spec that needed syncs only for o�-chip cache diagnose.)

� A \sync" instruction should precede a MTCPU0 if the SOU EN bit is being changed from

1 to 0 and there is any chance an outstanding DCache miss is still being serviced.

� The IHE (I-Cache Hash enable) bit cannot be changed while the PSW-C bit (code trans-

lation) is set.

� When executing R1I to read the Level1 instruction cache, the Level1 cache must �rst be

disabled by clearing the L1ICACHE EN bit in CPU diagnose register #0. It must also be

guaranteed that the instruction immediately preceding the RI1 instruction is not a branch

that branches to a new page.

� As mentioned in the Fault Tolerance section, the CPU does not guarantee that it will

take an HPMC trap on the same instruction that caused it to be signaled. eg. A load

instruction to a non-existent memory location will not trap on this instruction but will trap

on a subsequent instruction. PDC self-test software which wishes to cause an "expected"

HPMC, therefore needs to know how long to wait for HPMC traps to occur. The answer

depends on many things: 1) I-fetch vs. D-Access, 2) Stall on Use Miss, and 3) whether the

MIOC HPMCH line is signalled during or after the transaction causing the error. Here is

one way to check for an expected HPMC: Load instruction to non-existent memory location

with the SOU EN (stall-on-use enable) bit clear, followed by two \sync" instructions will

guarantee that the HPMC will be taken on or before the next instruction (following the

second sync).

� There are extra restrictions when software runs with code translation enabled and with

the L1 cache disabled. After setting the L1 cache disable bit in DR0 and before RFI'ing

to virtual mode, software must execute L1 diagnose write and read instructions to put

coherent values (where the instructions match the predecoded steering bits) into the read

portions of DR27, DR28, and DR29. If the L1 cache is so damaged that it is not possible

Hewlett-Packard



93

to write a coherent pattern and read it back successfully, then software must never return

to virtual mode.

Example.

MTCPU27(0)

MTCPU28(0)

IMM(0x18800000,gra)

MTCPU29(gra)

WI1(grb)

RI1MTCTL(grb)

MFCPU27(grx)

MFCPU28(gry)

MFCPU29(grz)

(mask off bits of grz except steering bits, [2:9])

combf,=,n 0,grx,halt

combf,=,n 0,gry,halt

combf,=,n gra,grz,halt

� If the SOU EN bit is 0 in DR0, then ldw/ldw bundles must also be disabled (ie. DR0[21:22]

not equal to 00).

� Bit 20 of DR0 (ISTRM EN) should be cleared before executing any diagnose instruction

(except MTCPU, MFCPU T, and MFCPU C) from memory space. This restriction can

be relaxed if software can guarantee that no DMA will occur or that no L2 Icache misses

will occur within 8 instructions of the diagnose instructions.

Hewlett-Packard



94

Hewlett-Packard



95

Chapter 9

Fault Tolerance

9.1 Introduction

PA7100LC has error detection on all external cache SRAM's and on the on-chip instruction

cache. Single bit errors in these caches are detected and cause an HPMC. Thus, it is up to

software to determine the recoverability of these errors and to attempt any recovery. The

TLB (and other on-chip circuitry) does not have parity circuitry and does not detect errors.

The memory system (DRAM's) supports single-bit correct, double-bit detect Hamming codes.

Therefore, single bit memory errors are automatically corrected by the hardware and signal

LPMC for logging purposes, and double bit memory errors are detected and reported through

HPMC.

All TOC's and ICache HPMC's should be recoverable, depending upon the IPSW Q bit

being set. All Dcache and Memory HPMC's should be unrecoverable. Group 4 interruptions

are never lost due to HPMC. See the rest of this chapter for more details of recoverability.

Note: After any error indication, software must clear the appropriate diagnose register error

ags on the CPU (via Move To Diagnose Register) or the appropriate error ags in the MIOC

Status Register (via I/O write) before doing an RFI from the HPMC or LPMC trap handler.

For details of what information is saved in the diagnose registers, see the diagnose section in

this ERS or the MIOC ERS.

Hewlett-Packard



96

9.2 On-chip Instruction Cache

Hardware

Hardware detects an error too late to stop the "errored" instruction from entering the pipeline.

The CPU control will stop the errored instruction from a�ecting architected state and will take

an HPMC on the instruction that caused the error or on a prior instruction. Note that HPMC's

taken while the PSW Q bit is zero are unrecoverable, because the IIASQF/IIAOQF will not be

updated.

Software

The HPMC handler will begin out of I/O space (address F0000000) and should turn o� the L1

cache (using DIAGnose) before branching to memory space. The HPMC handler should fully

test the L1 cache using DIAGnose instructions. If it �nds only soft errors, it can invalidate all

L1 cache entries, turn on the L1 cache, and RFI to normal operation. If the HPMC handler

�nds a hard error in the L1 cache, it has the option of keeping the L1 cache turned o�, and

returning to normal (but degraded performance) operation. Please see the restriction in the

Software Constraints section of the Diagnose chapter that may disallow running in code virtual

mode with the L1 cache disabled.

9.3 O�-chip Instruction Cache

Hardware

Hardware detects an error too late to stop the "errored" instruction from entering the pipeline.

The CPU control will stop the errored instruction from a�ecting architected state and will take

an HPMC on the instruction that caused the error or on a prior instruction. Note that HPMC's

taken while the PSW Q bit is zero are unrecoverable, because the IIASQF/IIAOQF will not be

updated.

Software

The HPMC handler will begin out of I/O space (address F0000000) and cannot branch to

memory space without taking the risk of getting a nested HPMC. The HPMC handler should

fully test the L2 instruction cache using DIAGnose instructions. If it �nds only soft errors, it

can invalidate all L2 cache entries and RFI to normal operation. If the HPMC handler �nds

Hewlett-Packard



97

a hard error in the L2 instruction cache, it can either bring the machine down or it can hide

the L2 instruction cache error location by loading the appropriate location in the L1 instruction

cache using DIAGnose instructions. Note that this second option will result in severly degraded

performance since L1 misses that result in L2 access to the error location will result in an HPMC.

9.4 O�-chip Data Cache

Hardware

On systems without error correction codes, data cache errors on dirty data are always unrecov-

erable. In order to further reduce hardware complexity, PA7100LC treats all data cache errors

as unrecoverable. This is the same strategy as PA7100 and earlier processors.

The error signal coming from the L2 cache arrives too late to stop the errored data from

corrupting architected state. It also comes too late to guarantee that the CPU will take the

HPMC instruction on the instruction that caused the error. The HPMC can occur on the

o�ending instruction or on any of the next two instruction bundless in the pipeline.

Software

Since software has no way to regenerate dirty data that has an error, and since the IIASQF/IIAOQF

are not guaranteed to allow retry of instructions with errors, there is no way for software to

recover from an HPMC caused by a data cache error.

9.5 Memory Errors

Single bit memory errors are fully corrected by the MIOC and are reported to software via the

LPMC handler. Double bit errors are not corrected and are reported via the HPMC handler.

Software cannot recover from a double bit memory error. The MIOC Status Register contains

information regarding the error, and the error indicator must be cleared before re-enabling

HPMC or LPMC. See the MIOC ERS for details.

9.6 I/O Errors

I/O Errors causing an HPMC or LPMC on the GSC bus will be detected by the MIOC and will

cause the CPU to vector to the appropriate trap handler. Software can poll the MIOC status

Hewlett-Packard



98

register to determine that a GSC error has occurred. See the LASI and MIOC ERS's for more

details.

9.7 Software Requirements

This section lists some requirements on PDC software for HPMC, TOC, and LPMC handling.

The next section which describes PIM issues is related to this topic.

Requirements for HPMC:

� When an HPMC is signalled by the MIOC during a memory or I/O transaction (due to a

miss) the cache line which was copied into may have bad data. Since the cache controller

validates the line, this line must be purged (or ushed) before an RFI from the HPMC.

� The diagnose bit indicating the source of the error must be cleared before an RFI from

the HPMC. The bits indicating the source of the error are in CPU diagnose register #0

or in an MIOC status register.

Requirements for LPMC:

� The diagnose bit indicating the source of the error must be cleared in the MIOC status

register before an RFI from the LPMC (to avoid another LPMC for the same condition).

The CPU has no LPMC indicators in DR0.

9.8 PIM Issues

This section will indicate how each of the PIM (Processor Internal Memory) bits are determined

from Processor state.

CPU State Word

This includes the following bits

iqv : IIA queue Valid Always set.

iqf : IIA queue Failure Never set. The CPU cannot guarantee to trap on the instruction

that caused the HPMC.

Hewlett-Packard



99

ipv : IPRs Valid Never set. The CPU cannot guarantee to trap on the instruction that caused

the HPMC.

grv : GRs Valid Always set.

crv : CRs Valid Always set.

srv : SRs Valid Always set.

srv : TRs Valid Always set.

tl : Trap Lost Never set.

sis : Storage Integrity Syncronized. Always set.

cs : Check Severity Set to 0 (CHECK CRITICAL) for DCache, Memory, and GSC errors.

Set to 1,2 or 3 (CHECK TRANSPARENT or CHECK ISOLATED) for ICache errors or

Transfer-of-Control (TOC) traps.

Cache Check Word

By polling CPU diagnose register #0 software can determine whether a cache HPMC was

caused by the on-chip ICache, by the o�-chip ICache, or by the o�-chip DCache. Also, for

o�-chip Cache errors, the diagnose register contains 4-bits indicating whether the error occurred

in the even-word, odd-word, tag-word, or dirty bit.

TLB Check Word

The TLB is on-chip and does not have parity detection circuitry. Therefore, this word should

never be set as a result of HPMC or LPMC.

Bus Check Word

See MIOC ERS for a details concerning the Bus CheckWord, Slave Address, and Master address.

9.8.1 Other Check Words

The Assist Check word, and Assist ID word bits are never set because there is never an HPMC

or LPMC due to an assist.

Hewlett-Packard


