

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 1of 44

1 Runway Bus Interface
Block
1.1 Overview

The Runway Bus Interface Block (RBIB) in Astro is responsible for connecting up to four
PCXW processor caches, Astro’s I/O controller, and Astro’s memory controller together in a
manner that preserves cache coherency and transaction ordering. The major tasks performed by
the RBIB are:

• Route Runway transactions to the memory controller or the I/O controller or both

• Route DMA and peer-to-peer I/O transactions from the I/O controller to Runway

• Route read return transactions from the memory controller to Runway

• Track transactions that are pending in the memory controller

• Track coherency status of pending coherent transactions

• Detect and resolve memory ordering confli cts for transactions pending in the memory
controller

• Perform system level flow control of coherency checks, memory transaction buffers, and
I/O transaction buffers

The following documents provide useful background for understanding some of the topics
discussed in the rest of this chapter:

• Runway Bus Specification Rev 1.3

• PA-RISC 2.0 Architecture

1.2 Runway vs. Astro Bit and Byte Ordering

The Runway Bus uses the convention that the most significant bit of a data field is bit 0 and the
most significant byte of a data field is byte 0. (i.e. Big-endian bit ordering and big-endian byte
ordering.) The Runway pads in Astro follow the same convention to make it easy for board
designers to connect Astro to the Runway Bus.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 2of 44

 ADDR_DATA[0:63]
Most Sig Bit Least Sig Bit Bit 0 63

Byte 0 1 2 3 4 5 6 7

Table 1: Runway Bus Byte Ordering (Non-Turbo-Mode)

 ADDR_DATA[0:63]
Most Sig Bit Least Sig Bit Time Bit 0 63

Byte 0 1 2 3 4 5 6 7
Byte 8 9 10 11 12 13 14 15

Table 2: Runway Bus Byte Ordering (Turbo-Mode)

The PCI Bus, AGP Bus, Astro internal busses, and Astro registers use the convention that the
least significant bit of a data field is bit 0 and the least significant byte of a data field is byte 0.
(i.e. Little-endian bit ordering and littl e-endian byte ordering.)

 REGISTER[63:0]
Most Sig Bit Least Sig Bit Bit 63 0

Byte 7 6 5 4 3 2 1 0

Table 3: Astro Byte Ordering (64-bit Internal Register)

 addr_data[127:0]
Most Sig Bit Least Sig Bit Bit 127 0

Byte 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 4: Astro Byte Ordering (128-bit Internal Bus)

Astro converts the big-endian Runway bus to littl e-endian at the Runway pads in an address
invariant manner. (Or in DEW terminology, Bytes-is-bytes.) This means that the address of each
byte is preserved. (Byte N on the Runway bus is mapped to Byte N on PCI, AGP, Astro internal
busses, and Astro internal registers.) Within any byte, bit n on Runway is mapped to bit 7-n in
Astro. This strategy has the following properties:

• If a processor is in big-endian mode, then any data larger than the size of a byte (i.e. half-
word, word, or double-word) will appear byte-swapped to a littl e-endian PCI device,
AGP device, or Astro internal register and vice-versa. For example, assume a 64-bit
register in Astro contains the value 0x0123456789ABCDEF. If a processor in big-endian
mode reads the register, then the processor would read 0xEFCDAB8967452301. The
processor must do an 8-byte byte-swap to interpret the data correctly.

• If a processor is in littl e-endian mode, then data of all sizes will appear the same to a
littl e-endian PCI device, AGP device, or Astro internal register and vice-versa. For
example, assume a 64-bit register in Astro contains the value 0x0123456789ABCDEF. If
a processor in big-endian mode reads the register, then the processor would read
0x0123456789ABCDEF.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 3of 44

This method is also consistent with the way PCI is implemented on HP-PA platforms with the
Dino GSC to PCI bus bridge.

Note for Astro design and verification engineers: Due to the address invariant mapping of the
Runway pads, the 40-bit physical address field and the 10-bit virtual index field that are found on
the Runway ADDR_DATA[0:63] lines during address cycles will be mapped to the following
bit positions on Astro internal busses (assume that the internal bus is named addr_data[127:0]):

• Address[39:0] = addr_data[31:24,39:32,47:40,55:48,63:56]

• Virt_Index[9:0] = addr_data[19:18,11:8,23:20]

1.3 Basic Transaction Flow

The RBIB routes data between the following three blocks:

• Runway Interface (which acts as an interface to the processors)

• Coherency Map (which acts as an interface to the memory controller)

• I/O controller (which acts as an interface to the Rope Bus and PCI host bridges)

The three major blocks in the RBIB are connected together by two internal busses, the Runway
Input Bus and the Runway Output Bus, as show in Figure 1: Basic Runway Bus Interface
Block Diagram. The Runway Input Bus routes in-bound Runway transactions from the Runway
interface to the coherency map or the I/O controller or both. The Runway Output Bus routes out-
bound transactions from the I/O controller to the Runway interface or from the coherency map to
the Runway interface.

Runway
Bus

Runway Input Bus

Runway Output Bus
Runway
Interface

Coherency
Map

I/O Controller

Memory
Controller

Figure 1: Basic Runway Bus Interface Block Diagram

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 4of 44

Table 5 defines all possible transactions that take place in the RBIB. (Note: A processor-to-
processor cache-to-cache copy is equivalent to a processor write.)

Transaction Description

Processor Write Processor write to memory space.

Processor Non-Coherent Read Processor non-coherent read from memory space.

Processor Coherent Read Processor coherent read from memory space.

Processor Read Return Processor memory space read return from memory controller.

Processor I/O Write Processor write to I/O space.

Processor I/O Read Processor read to I/O space.

Processor I/O Read Return Processor I/O space read return from I/O controller.
Processor Flush/Purge/Sync Processor flush, purge, or sync transaction.

Processor Purge/Sync Done Done transaction for a processor purge or sync transaction.

DMA Write I/O controller write to memory space.

DMA Coherent Read I/O controller coherent read from memory space.

DMA Read Return I/O controller memory space read return from memory controller.

DMA Cache-to-Cache Copy I/O controller memory space read return from processor.

I/O Write to Processor I/O controller write to I/O space in processor.

I/O Read from Processor I/O controller read from I/O space in processor.

I/O Read Return from Processor I/O controller I/O space read return from processor.

Peer-to-Peer I/O Write I/O controller write to I/O space.

Peer-to-Peer I/O Read I/O controller read from I/O space.

Peer-to-Peer I/O Read Return I/O controller I/O space read return from I/O controller.

Table 5: Runway Bus Interface Block Transactions

One transaction that appears to be missing from Table 5 is an I/O controller-to-processor cache-
to-cache copy. This transaction is not generated by the I/O controller. Instead, the I/O controller
will write all private-dirty cache lines that are hit by a coherent read back to memory before
sending the coherency response for the read.

1.3.1 Processor Write, Processor Non-coherent Read
Transaction Flow

This transaction starts in the processor and goes to the Runway interface via the Runway bus.
The Runway interface sends the transaction to the coherency map via the Runway Input Bus. The
coherency map sends the transaction to the memory controller.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 5of 44

Runway
Bus

Runway Input Bus

Runway Output Bus
Runway
Interface

Coherency
Map

I/O Controller

Memory
Controller

Figure 2: Processor Write, Processor Non-coherent Read Transaction Flow

1.3.2 Processor Coherent Read Transaction Flow

This transaction starts in the processor and goes the to Runway interface via the Runway bus.
The Runway interface sends the transaction to the I/O controller and coherency map via the
Runway Input Bus. The I/O controller will snoop the transaction. The coherency map sends the
transaction to the memory controller.

Runway
Bus

Runway Input Bus

Runway Output Bus
Runway
Interface

Coherency
Map

I/O Controller

Memory
Controller

Figure 3: Processor Coherent Read Transaction Flow

1.3.3 Processor Read Return Transaction Flow

This transaction starts in the memory controller and goes to the coherency map. The coherency
map send the transaction to the Runway interface via the Runway Output Bus. The Runway
interface sends the transaction to the processor via the Runway bus.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 6of 44

Runway
Bus

Runway Input Bus

Runway Output Bus
Runway
Interface

Coherency
Map

I/O Controller

Memory
Controller

Figure 4: Processor Read Return Transaction Flow

1.3.4 Processor I/O Write, Processor I/O Read, I/O Read Return
from Processor Transaction Flow

This transaction starts in the processor and goes the to Runway interface via the Runway bus.
The Runway interface sends the transaction to the I/O controller via the Runway Input Bus.

Runway
Bus

Runway Input Bus

Runway Output Bus
Runway
Interface

Coherency
Map

I/O Controller

Memory
Controller

Figure 5: Processor I/O Write, Processor I/O Read, I/O Read Return from Processor
Transaction Flow

1.3.5 Processor I/O Read Return, I/O Write to Processor, I/O
Read from Processor Transaction Flow

This transaction starts in the I/O controller and goes to the Runway interface via the Runway
Output Bus. The Runway interface sends the transaction to the processor via the Runway bus.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 7of 44

Runway
Bus

Runway Input Bus

Runway Output Bus
Runway
Interface

Coherency
Map

I/O Controller

Memory
Controller

Figure 6: Processor I/O Read Return, I/O Write to Processor, I/O Read from
Processor Transaction Flow

1.3.6 Processor Flush/Purge/Sync Transaction Flow

This transaction starts in the processor and goes the to Runway interface via the Runway bus.
The Runway interface sends the transaction to the I/O controller and coherency map via the
Runway Input Bus. The I/O controller will snoop the transaction.

Runway
Bus

Runway Input Bus

Runway Output Bus
Runway
Interface

Coherency
Map

I/O Controller

Memory
Controller

Figure 7: Processor Flush/Purge/Sync Transaction Flow

1.3.7 Processor Purge/Sync Done Transaction Flow

This transaction starts in the coherency map and goes to the Runway interface via the Runway
Output Bus. The Runway interface sends the transaction to the processor via the Runway bus.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 8of 44

Runway
Bus

Runway Input Bus

Runway Output Bus
Runway
Interface

Coherency
Map

I/O Controller

Memory
Controller

Figure 8: Processor Purge/Sync Done Transaction Flow

1.3.8 DMA Write Transaction Flow

This transaction starts in the I/O controller and goes the to the Runway interface via the Runway
Output Bus. The Runway interface reflects the transaction on the Runway bus and sends it to the
coherency map via the Runway Input Bus. The coherency map sends the transaction to the
memory controller.

Runway
Bus

Runway Input Bus

Runway Output Bus
Runway
Interface

Coherency
Map

I/O Controller

Memory
Controller

Figure 9: DMA Write Transaction Flow

1.3.9 DMA Coherent Read Transaction Flow

This transaction starts in the I/O controller and goes to the Runway interface via the Runway
Output Bus. The Runway interface reflects the transaction on the Runway bus and sends it to the
I/O controller and coherency map via the Runway Input Bus. The transaction is reflected back to
the I/O controller so it can snoop the transaction and know when to take cache line ownership.
The coherency map sends the transaction to the memory controller.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 9of 44

Runway
Bus

Runway Input Bus

Runway Output Bus
Runway
Interface

Coherency
Map

I/O Controller

Memory
Controller

Figure 10: DMA Coherent Read Transaction Flow

1.3.10 DMA Read Return Transaction Flow

This transaction starts in the memory controller and goes to the coherency map. The coherency
map send the transaction to the Runway interface via the Runway Output Bus. The Runway
interface reflects the transaction on the Runway bus and sends it to the I/O controller via the
Runway Input Bus.

Runway
Bus

Runway Input Bus

Runway Output Bus
Runway
Interface

Coherency
Map

I/O Controller

Memory
Controller

Figure 11: DMA Read Return Transaction Flow

1.3.11 DMA Cache-to-Cache Copy Transaction Flow

This transaction starts in the processor and goes the to Runway interface via the Runway bus.
The Runway interface sends the transaction to the I/O controller as a DMA read return and to the
coherency map as a write via the Runway Input Bus. The coherency map sends the transaction to
the memory controller.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 10of 44

Runway
Bus

Runway Input Bus

Runway Output Bus
Runway
Interface

Coherency
Map

I/O Controller

Memory
Controller

Figure 12: DMA Cache-to-Cache Copy Transaction Flow

1.3.12 Peer-to-Peer I/O Write, Peer-to-Peer I/O Read, Peer-to-
Peer I/O Read Return Transaction Flow

This transaction starts in the I/O controller and goes to the Runway interface via the Runway
Output Bus. The Runway interface reflects the transaction on the Runway bus and sends it back
to the I/O controller via the Runway Input Bus.

Runway
Bus

Runway Input Bus

Runway Output Bus
Runway
Interface

Coherency
Map

I/O Controller

Memory
Controller

Figure 13: Peer-to-Peer I/O Write, Peer-to-Peer I/O Read, Peer-to-Peer I/O Read
Return Transaction Flow

1.4 Preserving Memory Coherency Ordering

This section describes the ordering rules for memory transactions. (IO read and write
transactions are not covered by this section. See Appendix G: Memory Ordering Model in
PA-RISC 2.0 Architecture for more information.)

Astro preserves the order of Runway memory transactions. This does not mean that the physical
order of Runway transactions is the same as the physical order of transactions to the SDRAM.
The memory system in Astro (i.e. the coherency map and memory controller) is allowed to

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 11of 44

reorder Runway transactions going to memory to reduce read latency or improve memory
bandwidth provided the reordering of memory transactions does not violate any Runway ordering
rules. As long as none of the Runway ordering rules are violated, then a cache agent on Runway
can not tell i f the memory system reordered Runway transactions going to SDRAM or not.

1.4.1 Runway Transaction Ordering Rules

Runway transactions must obey the following ordering rules:

1. All coherent transactions without coherency checks (e.g. WRITE_BACK, FLUSH_BACK,
and C2C_WRITE) to the same cache line are ordered with respect to each other in the order
they are issued on the Runway bus.

2. All coherent transactions with coherency checks (e.g. READ_SHAR_OR_PRIV,
READ_CURRENT, READ_PRIV, DFLUSH, IFLUSH, DPURGE, DPURGE_ALLOC,
CACHE_SYNC, and DMA_SYNC) to the same cache line are ordered with respect to each
other in the order they are issued on the Runway bus.

3. All coherent transactions without coherency checks issued on the Runway bus before the
completion of the coherency response phase for a coherent transaction with coherency
checks to the same cache line are logically ordered in front of the coherent transaction with
coherency checks.

4. There are no ordering restrictions on non-coherent transactions (e.g. READ, WRITE).
Software is responsible for managing any ordering restrictions through the use of strongly
ordered sync transactions.

Rules #1, #2, and #4 are straightforward. Rule #3 can benefit from an example. Assume that two
processors, named A and B, are on a Runway bus, and that A issues a coherent read of a cache
line that is private dirty in B’ s cache. Assume that just before A reads the cache line, B decides
to move the cache line from cache back to memory with a write-back transaction. Under these
conditions, one possible sequence of Runway transactions is:

State Master Transaction Coh Response Notes
0 A READ_PRIV A starts private read
1 A:OK A signs-off on READ_PRIV in state #0
2 B WRITE_BACK B starts coherent write
3 B DATA0 Data for WRITE_BACK in state #2
4 B DATA1 Data for WRITE_BACK in state #2
5 B DATA2 Data for WRITE_BACK in state #2
6 B DATA3 Data for WRITE_BACK in state #2
7 B:OK B signs-off on READ_PRIV in state #0
8 Host DATA0 Read return for READ_PRIV in state #0
9 Host DATA1 Read return for READ_PRIV in state #0
10 Host DATA2 Read return for READ_PRIV in state #0
11 Host DATA3 Read return for READ_PRIV in state #0

Table 6: Runway Transaction Ordering Example

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 12of 44

Since B issued the write-back before it issued a coherency response to A’ s coherent read, the
write-back is logically ordered ahead of the coherent read. The host (memory controller) returns
the data from B’ s WRITE_BACK for A’ s READ_PRIV.

1.4.2 Simple Memory System Design

The simplest memory system design that preserves Runway logical ordering1 uses a coherency
FIFO to keep track of coherent transactions with coherency checks that have not completed the
coherency response phase and a memory issue FIFO to keep track of transactions that are ready
to be issued to memory. All coherent transactions with coherency checks would initiall y be
placed in the coherency FIFO. Once the coherency response phase completes for a transaction in
the coherency FIFO, the transaction is either moved into the memory issue FIFO or discarded
depending on the coherency response. All non-coherent transactions and coherent transactions
without coherency checks would be placed directly in the memory issue FIFO and thus pass all
coherent transactions with coherency checks that have not completed their coherency response
phase.

1.4.3 Memory System Performance Enhancements

The simplest memory system design does not allow Astro to take advantage of the following
architectural freedoms to improve memory system performance:

• Coherent reads can be opportunistically issued to memory before the coherency response
phase completes to reduce read latency. Extra logic is needed to throw away the read
return if the coherency response is COPY_OUT or reissue the read if a non-coherent
write to the same cache line is issued before the coherency response phase completes.

• Reads can be promoted ahead of writes to differing cache lines to reduce read latency.

• Read and write transactions to differing cache lines can be reordered to improve open
page hit rates and thus improve memory bandwidth.

In Astro, all three performance enhancements are used. The coherency map will opportunistically
issue coherent read transactions to memory before the coherency response phase completes. The
coherency map will clean up cases where the read should not have been issued or cases when the
read needs to be reissued. Both the coherency map and memory controller work together to
promote reads ahead of writes to differing cache lines. The memory controller will reorder
memory read and write transactions to differing cache lines to improve open page hit rates.

1.4.4 Conflict Detection and Resolution

Conflicts are cases where multiple accesses to the same cache line occur close enough in time
that the older access is not completely processed by the memory system before the newer access
is issued. In memory systems that reorder transactions to improve memory performance, confli cts

1 At least it is the simplest memory controller design I could think of...

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 13of 44

require some special case handling to adequately preserve the logical order of transactions. In
Astro, the coherency map is responsible for detecting confli cts and both the coherency map and
the memory controller are responsible for resolving confli cts.

The coherency map keeps track of all transactions that are pending in the memory system. A read
is pending from the time the Runway interface sends the read to the coherency map until the read
return is complete or the read return is discarded with a COPY_OUT coherency response. A
write transaction is pending from the time the Runway interface sends the write to the coherency
map until the memory controller issues the write to memory.

1.4.4.1 Write / Write Conflict

A write/write confli ct occurs when two writes to the same cache line are pending in Astro. The
writes must make it to memory in the same order they were issued on the Runway bus.

A FIFO called the write queue (WQ) prevents writes from passing writes in the coherency map.
The coherency map will i ssue writes to the memory controller in the order they were received
from the Runway bus.

The memory controller will never reorder two writes to the same address.

Under these conditions, a write can never pass another write to the same cache line.

1.4.4.2 Read / Read Conflict

A read/read confli ct occurs when two reads to the same cache line are pending in Astro. Since
the state of memory is the same for both reads, the reads can complete in any order.

1.4.4.3 Write / Read Conflict

A write/read confli ct occurs when a write and read to the same cache line are pending in Astro.
(The write was before the read on the Runway bus.) The write must make it to memory before
the read. (The read can not pass the write in Astro.)

When a read is sent from the Runway interface to the coherency map, the read is entered into the
RQ and the CRQ. (Note: In certain cases, the read may be issued immediately to the memory
controller without it being entered the RQ, but it is always entered into the CRQ.) The
coherency map checks the read address against all pending write transactions in the memory
system. If there is a confli ct, the confli ct is recorded in the coherency map entries for both the
read and the write.

As long as the coherency map has a pending write transaction with its read confli ct bit set, the
coherency map will assert the marked_read_fence signal. When the marked_read_fence is
asserted, the memory controller will not issue any reads that are “marked” to memory. A marked
read is a read that has a confli ct with a write.

Once the read reaches the top of the RQ, the coherency map is checked to see if the read confli cts
with a write. If so, writes are unloaded from the WQ until all confli cting writes are issued to the

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 14of 44

memory controller. Then the read at the top of the RQ is issued to the memory controller as a
marked read. Once the memory controller has retired all writes that have a read confli ct, the
coherency map will deassert the marked_read_fence signal. The memory controller is now free
to issue the marked read to memory.

Under these conditions a read can never pass a write to the same cache line.

1.4.4.4 Read / Write Conflict

A read/write confli ct occurs when a read and write to the same cache line are pending in Astro.
(The read was before the write on the Runway bus.) The write must make it to memory before
the read. (The write must pass the read in Astro.) See Rule #3 in Section 1.4.1 Runway
Transaction Ordering Rules for more information.

When a write is sent from the Runway interface to the coherency map, the write is entered into
the WQ. The coherency map checks the write address against all pending read transactions in the
memory system. If there is a confli ct, it is recorded in the coherency map entries for both the read
and the write.

As long as the coherency map has a pending write transaction with its read confli ct bit set, the
coherency map will assert the marked_read_fence signal to the memory controller to tell it not
to issue any reads that are “marked” to memory. A marked read is a read that has a confli ct with
a write.

Once the coherency response for the read reaches the top of the CRQ, the coherency map entry
for the read is checked to see if the read has been sent to the memory controller and whether a
write confli cted with the read after it had been sent to the memory controller. If this is the case,
and the coherency response is not COPY_OUT, then writes are unloaded from the WQ until all
confli cting writes are issued to the memory controller. Then the read at the top of the CRQ is
reissued to the memory controller as a marked read. Once the memory controller has retired all
writes that have a read confli ct, the coherency map will deassert the marked_read_fence signal.
The memory controller is now free to issue the marked read to memory.

Under these conditions a write will always pass a read to the same cache line.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 15of 44

1.5 Block Diagram

trk_control

abcd_read_cmi[3:0]

cmc_mc_addr_L[35:6]

trk_write_cmi_done[3:0]

cmc_mc_cmi[3:0]

ecc_rr_data[147:0]

abcd_rr_control

wdr_write_data[129:0]

rwp_coh0[1:0]

ioc_cohi[1:0]

cmc_mc_control

abcd_control

abcd_write_cmi[3:0]

cmc_marked_read_fence

trk_read_cmi_done[3:0]

sch_control

Write Data
R A M

(WDR)
(130-bit x 64)

(16 cache l ines)

Read Return
Data RAM

(RRDR)
(146-bit x 64)

(16 cache l ines)

Wri te Queue
(W Q)

(4-bit x 16)

Read Queue
(RQ)

(4-bit x 16)

Read Return Q
(RRQ)

(4-bit x 16)

Runway Slave
Interface

(RSI)

I /O Control ler

Runway Master
Interface

(RMI)

Memory
Control ler

Coherency Map
Control ler

(CMC)

Coherency
Response

Queue
(CRQ)

(15-bit x 16)

RIB = Runway Input Bus
R O B = Runway Output Bus

RIB Data

RIB Cont ro l

ROB Da ta (Mem)

ROB Cont ro l

R
IB

 D
at

a
R

IB
 C

on
tr

ol

R
O

B
 D

at
a

(I
O

C
)

R
O

B
 C

on
tr

ol

rwp_coh1[1:0]

rwp_coh2[1:0]

rwp_coh3[1:0]

io
c_

co
hi

[1
:0

]

R
un

w
ay

 P
ad

s

Runway Output
Bus Mux

(ROB Mux)

Figure 14: Runway Bus Interface Block Diagram

The complete RBIB block diagram is show in Figure 14: Runway Bus Interface Block
Diagram. The RBIB breaks down into the following blocks:

Runway Interface Blocks

• Runway Slave Interface (RSI)

• Runway Master Interface (RMI)

• Runway Arbiter (RA)

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 16of 44

Coherency Map Blocks

• Write Data RAM (WDR)

• Write Queue (WQ)

• Read Queue (RQ)

• Coherency Response Queue (CRQ)

• Coherency Map Controller (CMC)

• Read Return Queue (RRQ)

• Read Return Data RAM (RRDR)

1.6 Block Descriptions

1.6.1 Runway Interface Blocks

1.6.1.1 Runway Slave Interface

The RSI performs the following functions:

• Receives all Runway in-bound transactions.

• Decodes address range for Runway transactions to determine if they are to memory or
I/O space.

• Routes in-bound transactions to the coherency map, the I/O controller, or both via the
Runway Input Bus.

• Receives Runway coherency responses and forwards them to the coherency map.

• Detects and logs Runway parity errors on the Runway control, address, and data busses.

• Detects and logs address out-of-range errors for Runway transactions.

1.6.1.2 Runway Master Interface

The RMI performs the following functions:

• Masters all Runway out-bound transactions.

• Receives DMA transactions from the I/O controller via the Runway Output Bus and
forwards them to the Runway bus.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 17of 44

• Receives read return transactions from the coherency map via the Runway Output Bus
and forwards them to the Runway bus.

• Performs arbitration control for the Runway Output Bus.

• Uses the CLIENT_OP bus to implement system wide flow control for Astro and the
processors on the Runway bus.

• Uses the CLIENT_OP bus to arbitrate for the Runway bus for memory read returns.

• Uses the IOA arbitration out signal to arbitrate for the Runway bus for the I/O controller.

1.6.2 Coherency Map Interface Blocks

1.6.2.1 Write Data RAM

The WDR performs the following function:

• Buffers Runway write data for the memory controller.

The WDR buffers 16 cache lines of write data from Runway to be issued to the memory
controller. Data is written into the WDR by the Runway interface and read from the WDR by the
memory controller.

1.6.2.2 Write Queue

The WQ performs the following functions:

• Buffers the CMI for all write transactions that have been received from the Runway
interface but have not been issued to the memory controller.

• Keeps write transactions in the order they were issued on Runway.

The CMC will l oad a new CMI (see Section 1.6.2.5 Coherency Map Controller for definition
of CMI) into the WQ when the Runway interface sends a write to the coherency map. The CMC
will unload the WQ when it issues the write to the memory controller.

1.6.2.3 Read Queue

The RQ performs the following functions:

• Buffers the CMI for all read transactions that have been received from the Runway
interface but have not been issued to the memory controller.

• Keeps read transactions in the order they were issued on Runway.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 18of 44

The CMC will l oad a new CMI (see Section 1.6.2.5 Coherency Map Controller for definition
of CMI) into the RQ when the Runway interface sends a read to the coherency map. The CMC
will unload the RQ when it issues the read to the memory controller. Coherent reads at the head
of the RQ may be issued to the memory controller before the coherency response and read/write
confli ct checking phases are complete. In the case where a read uses the medium RQ bypass path
to go to the memory controller, no CMI is loaded into the RQ.

1.6.2.4 Coherency Response Queue

The CRQ performs the following functions:

• Buffers the CMI for all coherent transactions that have been received from the Runway
interface but have not completed the coherency response phase.

• Buffers the coherency responses from all processors on Runway.

• Buffers the coherency response from the I/O controller.

• Keeps coherency responses in the order that the coherent transactions were issued on
Runway.

The CMC loads a CMI (see Section 1.6.2.5 Coherency Map Controller for definition of CMI)
into the CRQ when the Runway interface sends a coherent transaction to the coherency map. The
Runway interface loads coherency responses from all processors into the CRQ. The I/O
controller also loads its coherency response into the CRQ. (Note: All data is loaded into the CRQ
in the order that the coherent transaction was issued on Runway.) Once the coherent transaction
at the head of the CRQ has a coherency response from all caching agents, the CMC will update
the coherency response for the transaction in the read coherency map. If there is no read/write
confli ct, then the CRQ is unloaded. Else, if there is a read/write confli ct, then the CRQ is
unloaded once the read is reissued to the memory controller by the coherency map.

1.6.2.5 Coherency Map Controller

The CMC performs the following functions:

• Tracks all transactions that are pending in the memory system.

• Tracks the coherency response for all coherent transactions that are pending in the
memory system.

• Loads the CMI for writes, reads, and coherent transactions into the WQ, RQ, and CRQ
respectively.

• Detects write/read and read/write confli cts.

• Issues writes to the memory controller from the WQ.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 19of 44

• Resolves write/read confli cts, if any, before issuing reads to the memory controller from
the RQ.

• Resolves read/write confli cts, if any, before reissuing reads from the CRQ, if necessary.

• Generates read return transactions to the Runway interface.

• Generates completion responses for sync and purge allocate transactions to the Runway
interface.

The CMC has a 16 entry read coherency map and a 16 entry write coherency map that keep track
of all memory transactions from the time they are received from Runway until they are complete.
(A transaction is complete when a write is issued to memory or a read returns data to the Runway
interface.) Every transaction in the read and write coherency maps is referenced by a 4-bit
coherency map index (CMI). See Section 1.7 Read/Write Coherency Map Definition for more
information.

1.6.2.6 Read Return Queue

The RRQ performs the following functions:

• Buffers the CMI for all read transactions that are ready to be returned (i.e. read return
data is in the RRDR, the coherency response phase is complete, and the coherency
response is not COPY_OUT) but have not been issued to either the Runway interface or
the I/O controller.

The RRQ is loaded by the CMC when one of the following conditions are met:

• The memory controller issues read return data to the RRDR for a read that has completed
its coherency response phase and the coherency response is not COPY_OUT.

- OR -

• The CRQ issues a coherency response that is not COPY_OUT for a read that has read
return data in the RRDR.

The CMC will unload the RRQ when it issues the read return to the Runway Output Bus.

1.6.2.7 Read Return Data RAM

The RRDR performs the following function:

• Buffers Runway read return data for the memory controller.

The RRDR buffers up to 16 cache lines of read return data yet to be issued to the Runway
interface. Data is written into the RRDR by the memory controller and read from the RRDR by
the coherency map. Data can be unloaded from the RRDR in a different order than it was loaded.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 20of 44

1.7 Read/Write Coherency Map Definition

The CMC block contains a 16 entry write coherency map that tracks the status of write
transactions and a 16 entry read coherency map that tracks the status of read transactions. Each
entry in each coherency map is referenced by a 4-bit coherency map index (cmi[3:0]). Below is a
definition of the fields in write and read coherency map entries.

Write Coherency Map Fields

Each write coherency map entry contains the following fields:

wcm_pending wcm_addr[35:6] wcm_in_wq wcm_read_conf

0 - No write pending

1- Write Pending

Physical Address 0 - Write not in WQ

1 - Write in WQ

0 - No read conflict

1 - Read conflict

Table 7: Write Coherency Map Fields

The “wcm” at the beginning of each field stands for “write coherency map.” The wcm_pending
field keeps track of whether the write is pending in the MC or not. This bit is used as a valid bit
for the entire write coherency map entry. The wcm_addr field keeps track of the 36-bit physical
address. (Since the MC will only do 64-byte cache line transactions, the 6 LSBs of the physical
address are always 6’b000000.) The wcm_in_wq field keeps track of whether the CMI for the
write is in the WQ or not. The mcm_read_conf field keeps track of whether this write
transaction confli cts with a read transaction that is pending in the read coherency map. The
cmc_marked_read_fence signal is asserted whenever there is one or more lines in the write
coherency map that have wcm_pending and wcm_read_conf both asserted. The
cmc_marked_read_fence is used to tell the MC to not allow a read with cmc_marked_read
asserted to be issued to memory.

Read Coherency Map Fields

Each read coherency map entry contains the following fields:

rcm_pending rcm_addr[35:6] rcm_master_id[2:0] rcm_trans_id[5:0]

0 - No read pending

1- Read Pending

Physical
Address

Runway master ID Runway
transaction ID

rcm_bs rcm_0_length rcm_type[1:0] rcm_coh_resp[1:0]

0 – No byte swap

1 – Byte swap

0 – Not 0 length

1 – 0 length

00 - READ

01 - PURGE_ALLOC

10 - SYNC

11 - NOP

00 - OK

01 – SHARED

10 – COPY_OUT

11 - NO_RESPONSE

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 21of 44

rcm_in_rq rcm_rr_count[1:0] rcm_write_conf rcm_late_write_conf rcm_error

0 - Read not in RQ

1 – Read in RQ

A count of the
number of read

returns pending in
the MC.

0 - No write
conflict

1 - Write conflict

0 - No late write
conflict

1 – Late write conflict

0 – No error

1 – Error

Table 8: Read Coherency Map Fields

The “rcm” at the beginning of each field stands for “ read coherency map.” The rcm_pending
field is asserted when a transaction enters the read coherency map entry and is deasserted when
the transaction is retired from the read coherency map entry. This bit is used as a valid bit for the
entire read coherency map entry. The rcm_addr field keeps track of the 36-bit physical address.
(Since the MC will only do 64-byte cache line transactions, the 6 LSBs of the physical address
are always 6’b000000.) The rcm_master_id and rcm_trans_id fields keep track of the Runway
master and transaction IDs respectively. The rcm_bs field is asserted for Runway read
transactions that require byte swapping of the read return data. The rcm_0_length field is set for
Runway read transactions that do not require read return data. (This feature is only possible for
read transactions that started in the I/O controller.) The rcm_type field keeps track of the
transaction type. The values of READ, PURGE_ALLOC, SYNC, and NOP represent coherent or
non-coherent read, purge allocate, sync, and coherent transactions that require no operation to be
performed in the coherency map respectively. (Flush and purge transactions are examples of
transactions that would have an rcm_type of NOP.) The rcm_coh_resp field keeps track of the
coherency response status for coherent reads. This field is initiall y set to OK for non-coherent
reads and NO_RESPONSE for all other transactions. The rcm_in_rq field keeps track of
whether the CMI for the read is in the RQ or not. The rcm_rr_count field keeps track of the
number of read returns pending in the MC. This field is incremented each time the read is issued
to the MC and decremented each time the MC returns data for the read in the RRDR. The
rcm_write_conf field is asserted when a read transaction confli cts with a write transaction that
is pending in the write coherency map. (The cmc_marked_read bit is asserted whenever a read
is issued to the MC with the rcm_write_conf bit asserted.) The rcm_late_write_conf field is
asserted when a later write transaction confli cts with a read transaction. When this condition
occurs, the CMC will re-issue the read to the memory controller at the end of the coherency
response phase. The rcm_error field is asserted when an error is detected for the transaction. If
the rcm_error field is asserted, then the RBIB will not do a read return for read transactions, a
SYNC_DONE for sync transactions, or a DPURGE_ALLOC_DONE for purge allocate
transactions.

1.8 Runway Bus Interface Block Registers

The following registers are implemented in the Runway Bus Interface Block. All registers must
be accessed with 64-bit I/O load/store instructions.

FROM A FIRMWARE AND SOFTWARE POINT-OF-VIEW: All “ reserved” register fields
must be written with “0”s and will read as “X”s. This allows future revisions of Astro to add
control bits in reserved fields to control unsightly bug fixes without breaking firmware or

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 22of 44

software. This is different than the “unimplemented” register fields used elsewhere in Astro.
Unimplemented fields may be written with “X”s and will read as “0”s.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 23of 44

1.8.1 Runway Slave Interface Registers

1.8.1.1 Memory Size Register
M
S
B

MEM_SIZE Register
(address: 0xFF_FED0_8000)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

 3
4

3
3

3
2

unimplemented size[38:32]
Power On Initialization

0 X X X X X

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

size[31:26] unimplemented re
Power On Initialization

X X X X X X 0

Size: 64-bit only
Field Access Description
size R/W Size of Astro memory. Size[38:37] is hardwired to 2’b00.
re R/W Range Enable. Set to “1” to enable Astro memory.

Register 1: MEM_SIZE Register

The MEM_SIZE register specifies how much memory is installed (and mapped) in Astro,
including any memory that is remapped because of the memory hole at addresses
0x00_F000_0000 to 0x00_FFFF_FFFF.

Memory size is defined as follows:

Mem_Size = { size[38:26], 26’b0}

Note that this register specifies the amount of memory, so the value is 1 larger than the highest
(unrelocated) memory location.

The MEM_SIZE register and MEM_HOLE_RELOC Register are currently defined to support up
to 64 GBytes of memory, which corresponds to 1 GBit SDRAMs in by-four packaging.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 24of 44

1.8.1.2 Memory Hole Relocation Register
M
S
B

MEM_HOLE_RELOC Register
(address: 0xFF_FED0_8008)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

 3
4

3
3

3
2

unimplemented distance[38:32]
Power On Initialization

0 1 0 0 0 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

unimplemented re
Power On Initialization

0

Size: 64-bit only
Field Access Description
distance R Relocation distance for LMMIO memory hole. Distance[38:32]

is hardwired to 7’b0010000.
re R/W Range Enable. Set to “1” to enable relocation range.

Register 2: MEM_HOLE_RELOC Register

The MEM_HOLE_RELOC register specifies where the memory normally at the address
0x00_F000_0000 to 0x00_FFFF_FFFF gets remapped.

Memory relocation distance is defined as follows:

Mem_Reloc = { distance[38:32], 32’b0}

The location of the relocated memory is defined as follows:

if (Mem_Size > 0xFFFF_FFFF) {
 Hole_Base = Mem_Reloc + LMMIO_Base;
 Hole_Top = Mem_Reloc + 0xFFFF_FFFF;
} else if (Mem_Size + LMMIO_Size > 0xFFFF_FFFF) {
 Hole_Base = Mem_Reloc + LMMIO_Base;
 Hole_Top = Mem_Reloc + Mem_Size – 1;
} else {
 /* No memory relocation is needed */
}

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 25of 44

1.8.2 Coherency Map Controller Registers

1.8.2.1 Runway Bus Interface Block Control Register
M
S
B

RBIB_CTRL Register
(address: 0xFF_FED0_C000)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

 3
4

3
3

3
2

reserved
Power On Initialization

X

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

re
se

rv
ed

th
ro

tt
le

_r
r_

en

re
se

rv
ed

m
ed

_r
ea

d_
by

pa
ss

_e
n

re
se

rv
ed

w
q_

hp
_h

w
[3

:0
]

w
q_

hp
_l

w
[3

:0
]

w
cm

_f
c_

hw
[3

:0
]

w
cm

_f
c_

lw
[3

:0
]

rc
m

_f
c_

hw
[3

:0
]

rc
m

_f
c_

lw
[3

:0
]

Power On Initialization
X X X 0 X X 0 X 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0

Size: 64-bit only
Field Access Description
throttle_rr_en R/W Enable read return throttling on Runway.
med_read_bypass_en R/W Enable medium read bypass logic.
wq_hp_hw R/W Write queue high priority high water mark.
wq_hp_lw R/W Write queue high priority low water mark.
wcm_fc_hw R/W Write coherency map flow control high water mark.
wcm_fc_lw R/W Write coherency map flow control low water mark.
rcm_fc_hw R/W Read coherency map flow control high water mark.
rcm_fc_lw R/W Read coherency map flow control low water mark.

Register 3: RBIB_CTRL Register

The RBIB_CTRL register controls performance tuning and flow control for the RBIB. The
RBIB_CTRL register can only be written when there are no reads or writes to memory pending
in Astro. PDC firmware should program the RBIB_CTRL register before it enables the memory
controller.

Note: The rsi_error_enable field in bit position 31 was removed for Astro 2.0. The
rsi_error_enable bit was a metal fix used in Astro 1.0 to disable any error detection in the RBIB
in case a falsely detected error would prevent the system from operating. For Astro 2.0 and
beyond, the error signaling bits in the ERROR_ENABLE register will t ake over this task.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 26of 44

When the throttle_rr_en field is 1, then read returns from memory will be throttled back when
either a processor or the I/O controller is arbitrating for the Runway bus. This feature helps keep
the memory pipeline from filli ng and draining as often.

When the med_read_bypass_en field is 1, then memory read requests are allowed to bypass the
RQ and issue directly to memory in one state. This feature should be able to trim 1 state off of
read latency.

The wq_hp_hw and wq_hp_lw fields control how far the WQ can get backed up before the
CMC prioriti zes writes ahead of reads. When the number of entries in the WQ is greater than
wq_hp_hw, then writes are treated as high priority. Writes will continue to be high priority until
the number of entries in the WQ is less than or equal to wq_hp_lw.

The wcm_fc_hw and wcm_fc_lw fields control how far the write coherency map can get backed
up before the CMC flow controls the Runway bus to the NONE_ALLOWED state. (In the
NONE_ALLOWED state, no transactions are allowed.) When the number of entries in the write
coherency map is greater than wcm_fc_hw, then Runway will be flow controlled. Runway will
continue to be flow controlled until the number of entries in the write coherency map is less than
or equal to wcm_fc_lw.

The rcm_fc_hw and rcm_fc_lw fields control how far the read coherency map can get backed
up before the CMC flow controls the Runway bus to the RET_ONLY state. (In the RET_ONLY
state, only memory write backs, memory flush backs, cache-to-cache writes, sync done
transactions, data purge allocate done transactions, error transactions, memory read returns and
I/O read returns are allowed.) When the number of entries in the read coherency map is greater
than rcm_fc_hw, then Runway will be flow controlled. Runway will continue to be flow
controlled until the number of entries in the read coherency map is less than or equal to
rcm_fc_lw.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 27of 44

1.8.2.2 Write Coherency Map Diagnostic Read Registers
M
S
B

WCM_DIAG_READ_0 to WCM_DIAG_READ_15 Register
(address: 0xFF_FED0_C100 to 0xFF_FED0_C178)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

 3
4

3
3

3
2

reserved

w
cm

_p
en

di
ng

w
cm

_i
n_

w
q

w
cm

_r
ea

d_
co

nf

Power On Initialization
X 0 X X

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

re
se

rv
ed

wcm_addr[35:6]

Power On Initialization
X

Size: 64-bit only
Field Access Description
wcm_pending R Entry in WCM is pending.
wcm_in_wq R Entry in WCM is in the WQ.
wcm_read_conf R Entry in WCM confli cts with a read in the RCM.
wcm_addr R Address of transaction.

Register 4: WCM_DIAG_READ_0 to 15 Register

The WCM Diagnostic Read Registers are 16 read-only registers that allow diagnostic code to
read the state of any line in the write coherency map. These registers are used to help debug
Astro. Firmware does not need to access these registers. See Section 1.7 Read/Write
Coherency Map Definition for information on write coherency map field definitions.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 28of 44

1.8.2.3 Read Coherency Map Diagnostic Read Registers
M
S
B

RCM_DIAG_READ_0 to RCM_DIAG_READ_15 Register
(address: 0xFF_FED0_C180 to 0xFF_FED0_C1F8)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

 3
4

3
3

3
2

reserved

rc
m

_p
en

di
ng

rc
m

_m
as

te
r_

id
[2

:0
]

rcm_trans_id[5:0]

rc
m

_b
s

rc
m

_0
_l

en
gt

h

rc
m

_t
yp

e[
1:

0]

rc
m

_c
oh

_r
es

p[
1:

0]

rc
m

_i
n_

rq

rc
m

_r
r_

co
un

t[
1:

0]

rc
m

_w
ri

te
_c

on
f

rc
m

_l
at

e_
w

ri
te

_c
on

f

Power On Initialization
X X X X X X X X X X 0 X

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

re
se

rv
ed

rcm_addr[35:6]

Power On Initialization
X

Size: 64-bit only
Field Access Description
rcm_pending R Entry in RCM is pending.
rcm_master_id R Master ID of transaction.
rcm_trans_id R Transaction ID of transaction.
rcm_bs R Byte swap read return.
rcm_0_length R Transaction is a 0 length read request.
rcm_type R Type of transaction.
rcm_coh_resp R Coherency response.
rcm_in_rq R Entry in RCM is in the RQ.
rcm_rr_count R Number of reads outstanding in the memory controller for this

entry in the RCM.
rcm_write_conf R Entry in RCM confli cts with a write in the WCM.
rcm_late_write_conf R Entry in RCM confli cts with a write in the WCM after the

read was issued to memory.
rcm_addr R Address of transaction.

Register 5: RCM_DIAG_READ_0 to 15 Register

The RCM Diagnostic Read Registers is a collection of 16 read-only registers that allow
diagnostic code to read the state of any line in the read coherency map. These registers are used
to help debug Astro. Firmware does not need to access these registers. See Section 1.7

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 29of 44

Read/Write Coherency Map Definition for information on read coherency map field
definitions.

1.9 Internal Bus Definitions

Below are the definitions of the signals on the Runway Input Bus and the Runway Output Bus.
The first field in a signal name identifies the block that drives the signal. The only exception to
this rule is for signals on the Runway Output Bus that are driven by more than one block. These
signals will begin with ‘rob’ to identify them as Runway Output Bus signals.

1.9.1 Runway Input Bus

Signal Description
rwp_addr_data[127:0] Multiplexed address and data bus. Addresses are mapped to

rwp_addr_data[31:24,39:32,47:40,55:48,63:56]. Data use
the entire rwp_addr_data bus.

rsi_byte_enable[15:0] Byte enables for I/O data (not address, not memory data) on
the rwp_addr_data bus. Byte enables are valid with the
address for an I/O write or I/O read transaction. (i.e. Byte
enables are valid when either rsi_io_read or rsi_io_write are
asserted.)

rwp_master_id[2:0] Master ID for address and data on the rwp_addr_data bus.
rwp_trans_id[5:0] Transaction ID for address and data on the rwp_addr_data

bus.
rsi_pdh_read64 PDH cache line read strobe. Asserted when a memory read to

PDH memory address space is on the Runway Input Bus.

Note: No memory address in-range or parity checks are
performed for this transaction. The rsi_error signal will
assert on the next state if an error occurred.

rsi_mem_read Memory read strobe. Asserted when a memory read address is
on the Runway Input Bus. Not asserted when a PDH cache
line read or a 0 length read is on the Runway Input Bus. See
rsi_pdh_read64 and rsi_0_length for more information.

Note: No memory address in-range or parity checks are
performed for this transaction. The rsi_error signal will
assert on the next state if an error occurred.

rsi_mem_write Memory write strobe. Asserted when a memory write address
is on the Runway Input Bus. No memory in-range or parity
checks are performed for this transaction.

Note: No memory address in-range or parity checks are
performed for this transaction. The rsi_error signal will
assert on the next state if an error occurred.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 30of 44

Signal Description
rsi_io_read I/O read strobe. Asserted when an I/O read address is on the

Runway Input Bus.

Note: No I/O address in-range or parity checks are performed
for this transaction. The rsi_error signal will assert on the
next state if an error occurred.

rsi_io_write I/O write strobe. Asserted when an I/O write address is on the
Runway Input Bus.

Note: No I/O address in-range or parity checks are performed
for this transaction. The rsi_error signal will assert on the
next state if an error occurred.

rsi_ioc_c2c_write I/O controller cache-to-cache write strobe. Asserted when a
cache-to-cache write address with the I/O controller master ID
is on the Runway Input Bus.

Note: No memory address in-range or parity checks are
performed for this transaction. The rsi_error signal will
assert on the next state if an error occurred.

rsi_ioc_rr_data_valid I/O controller read return data valid. Asserted when read
return data for the I/O controller is on the Runway Input Bus.
Used for read returns from memory, cache-to-cache copies
and I/O read returns.

NOTE: The rsi_ioc_rr_data_valid signal will assert for
Runway path errors (when both ADDR_VALID and
DATA_VALID are asserted). The rsi_byte_parity[15:0]
signal will be used to notify the I/O controller that a path error
occurred.

rsi_flush Flush strobe. Asserted when a memory flush address is on the
Runway Input Bus.

Note: No memory address in-range or parity checks are
performed for this transaction. The rsi_error signal will
assert on the next state if an error occurred.

rsi_purge Purge strobe. Asserted when a memory purge address is on
the Runway Input Bus.

Note: No memory address in-range or parity checks are
performed for this transaction. The rsi_error signal will
assert on the next state if an error occurred.

rsi_purge_alloc Purge allocate strobe. Asserted when a memory purge allocate
address is on the Runway Input Bus.

Note: No memory address in-range or parity checks are
performed for this transaction. The rsi_error signal will
assert on the next state if an error occurred.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 31of 44

Signal Description
rsi_sync Sync strobe. Asserted when a sync transaction is on the

Runway Input Bus.

Note: No parity checks are performed for this transaction.
The rsi_error signal will assert on the next state if an error
occurred.

rsi_coherent Coherent transaction strobe. Asserted when a coherent
transaction is on the Runway Input Bus. (i.e. Asserted when
ADDR_VALID is asserted, DATA_VALID is deasserted, and
TTYPE[2] is asserted.)

Note: No memory address in-range or parity checks are
performed for this transaction. The rsi_error signal will
assert on the next state if an error occurred.

rsi_byte_swap Byte swap transaction strobe. Asserted when a byte swapped
read address is on the Runway Input Bus.

Note: No memory address in-range or parity checks are
performed for this transaction. The rsi_error signal will
assert on the next state if an error occurred.

rsi_0_length Zero length read strobe. Asserted when a 0 length read
address is on the Runway Input Bus.

Note: No memory address in-range or parity checks are
performed for this transaction. The rsi_error signal will
assert on the next state if an error occurred.

rsi_private Private read strobe. Asserted when a private read address is on
the Runway Input Bus.

Note: No memory address in-range or parity checks are
performed for this transaction. The rsi_error signal will
assert on the next state if an error occurred.

rsi_ioc_mastered I/O controller mastered transaction. Asserted when am
address that was mastered by the I/O controller is on the
Runway Input Bus. The I/O controller will only sample this
signal when rsi_coherent is also asserted. This tells the I/O
controller it mastered the coherent transaction.

rsi_error Error strobe. Asserted when the previous Runway Input Bus
transaction was either a broadcast error, or an out-of-range
memory transaction, or an out of range I/O transaction, or a
transaction with an address parity error, or a transaction with
a control parity error. See Section 1.9.1.1:Runway Input Bus
Error Strategy for more information.

rsi_memory_oor Memory out-of-range strobe. Asserted when the previous
Runway Input Bus transaction contained a memory address
that was out-of-range. When asserted, rsi_error must also be
asserted.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 32of 44

Signal Description
rsi_parity_error[1:0] Uncorrectable data parity error. A data parity error occurred

on rwp_addr_data[127:64] when rsi_parity_error[1] is
asserted and a data parity error occurred on
rwp_addr_data[63:0] when rsi_parity_error[0] is asserted.
All bits of rsi_parity_error[1:0] will assert for a Runway
path error (when both ADDR_VALID and DATA_VALID
are asserted). See Section 1.9.1.1:Runway Input Bus Error
Strategy for more information.

rsi_byte_parity[15:0] Byte parity for data (not address) on the rwp_addr_data bus.
Parity is even. (There will always be an even number of 1’s
for data and parity combined.) Byte parity is poisoned for
Runway parity errors at 4-byte granularity. All bits of
rsi_byte_parity[15:0] will assert for a Runway path error
(when both ADDR_VALID and DATA_VALID are asserted).
See Section 1.9.1.1:Runway Input Bus Error Strategy for
more information.

rwp_coh0[1:0]
rwp_coh1[1:0]
rwp_coh2[1:0]
rwp_coh3[1:0]

Runway Coherency response from processors. Each
processor is mapped to an aligned two-bit field. Coherency
responses are:

• 2’b00: OK
• 2’b01: COPYOUT
• 2’b10: SHARED
• 2’b11: NO_RESPONSE

ioc_cohi[1:0] I/O cache coherency response. Uses the same coherency
response encoding as rwp_coh0.

cmc_rq_cmi Next available read coherency map index for transactions
entered into the RQ or CRQ.

cmc_wq_cmi Next available write coherency map index for transactions
entered into the WQ.

Table 9: Runway Input Bus Signal Definitions

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 33of 44

Runway
Transaction Type rs

i_
pd

h_
re

ad
64

rs
i_

m
em

_r
ea

d

rs
i_

m
em

_w
ri

te

rs
i_

io
c_

c2
c_

w
ri

te

rs
i_

io
_r

ea
d

rs
i_

io
_w

ri
te

rs
i_

fl
us

h

rs
i_

pu
rg

e

rs
i_

pu
rg

e_
al

lo
c

rs
i_

sy
nc

rs
i_

co
he

re
nt

rs
i_

by
te

_s
w

ap

rs
i_

0_
le

ng
th

rs
i_

pr
iv

at
e

READ (PDH) X
READ (Memory) X
READ_BS (PDH) X X
READ_BS (Memory) X X
READ_SHAR_OR_PRIV X X
READ_CURRENT X X
READ_PRIV X X X
READ_PRIV (0 length hint) X X X
CLEAR_PRIV X X X
WRITE X
WRITE_BACK X
FLUSH_BACK X
C2C_WRITE (not to IOC) X
C2C_WRITE (to IOC) X X
READ_SHORT X
WRITE_SHORT X
DFLUSH X X
DFLUSH_WR X X
DFLUSH_RD X X
DFLUSH_RD_WR X X
IFLUSH X X
DPURGE X X
DPURGE_ALLOC X X
CACHE_SYNC X X
DMA_SYNC X X
Other with TTYPE[2] = 0
Other with TTYPE[2] = 1 X

Table 10: Runway Input Bus Transaction Decoding

1.9.1.1 Runway Input Bus Error Strategy

Runway Input Bus transactions that have address parity errors, address control parity errors, and
address out-of-range errors are signaled by asserting rsi_error one state after the transaction is
issued on the Runway Input Bus. Table 11: Runway Input Bus Error Responses define how
Runway Input Bus transactions are resolved if rsi_error is asserted.

RIB Transaction Error Response
READ (PDH)
READ_BS (PDH)

The PDH cache line read transaction is ignored by the I/O
controller. The read will never be issued to Dill on.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 34of 44

RIB Transaction Error Response
READ (Memory)
READ_BS (Memory)
READ_SHAR_OR_PRIV
READ_CURRENT
READ_PRIV
READ_PRIV (0 length
hint)
CLEAR_PRIV

If the memory read transaction’s address is out-of-range, then
the read will be sent to the MBAT and the MBAT will i gnore
the transaction. There will be no read issued to memory, there
will be no read return to the RRDR.

Otherwise, the transaction will be sent to memory, the read
return will go to the RRDR, and the CMC will never issue a
read return.

WRITE
WRITE_BACK
C2C_WRITE (not to IOC)

The memory write transaction is ignored by the CMC. The
write will never make it to memory.

C2C_WRITE (to IOC) The memory write transaction is ignored by the CMC. The
write will never make it to memory.

The I/O controller cache-to-cache write transaction will
complete as normal in the I/O controller. (The I/O controller
does not care about the address phase of a cache-to-cache
write, it only cares about the data associated with the master
and transaction ID.)

READ_SHORT The I/O read transaction is ignored by the I/O controller.
There will be no I/O read issued to the Rope Bus.

WRITE_SHORT The I/O write transaction is ignored by the I/O controller.
There will be no I/O write issued to the Rope Bus.

DFLUSH
DFLUSH_WR
DFLUSH_RD
DFLUSH_RD_WR
IFLUSH

The CMC will t rack the coherency response to keep the CRQ
up-to-date.

The I/O controller will i gnore the transaction, but give an OK
coherency response.

DPURGE The CMC will t rack the coherency responses to keep the CRQ
up-to-date.

The I/O controller will i gnore the transaction, but give an OK
coherency response.

DPURGE_ALLOC The CMC will t rack the coherency responses to keep the CRQ
up-to-date. The CMC will not issue a
DPURGE_ALLOC_DONE to Runway.

The I/O controller will i gnore the transaction, but give an OK
coherency response.

CACHE_SYNC
DMA_SYNC

The CMC will t rack the coherency responses to keep the CRQ
up-to-date. The CMC will not issue a SYNC_DONE to
Runway.

The I/O controller will i gnore the transaction, but give an OK
coherency response.

Other with TTYPE[2] = 0 The transaction will be ignored.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 35of 44

RIB Transaction Error Response
Other with TTYPE[2] = 1 The CMC will t rack the coherency responses to keep the CRQ

up-to-date.

The I/O controller will i gnore the transaction, but give an OK
coherency response.

Table 11: Runway Input Bus Error Responses

Data parity errors, data control parity errors, and data path errors (when both ADDR_VALID and
DATA_VALID are asserted) are signaled by poisoning rsi_byte_parity[15:0] and asserting
rsi_parity_error[1:0].

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 36of 44

1.9.2 Runway Output Bus

Signal Description
rob_addr_data[127:0] Multiplexed address and data bus. Addresses are mapped to

rob_addr_data[31:24,39:32,47:40,55:48,63:56]. Virtual
indexes are mapped to rob_addr_data[19:18,11:8,23:20].
Data use the entire rob_addr_data bus. Note: Due to the
addition of the ROB multiplexer, there is a memory controller
and I/O controller version of this bus.

rob_byte_parity[15:0] Byte parity for data (not address) on the rob_addr_data bus.
Parity is even. (There will always be an even number of 1’s
for data and parity combined.) Byte parity is poisoned for I/O
controller parity errors and memory uncorrectable ECC errors.
Note: Due to the addition of the ROB multiplexer, there is a
memory controller and I/O controller version of this bus.

rob_master_id[2:0] Master ID for address and data on the rob_addr_data bus.
Note: Due to the addition of the ROB multiplexer, there is a
memory controller and I/O controller version of this bus.

rob_trans_id[5:0] Transaction ID for address and data on the rob_addr_data
bus. Note: Due to the addition of the ROB multiplexer, there
is a memory controller and I/O controller version of this bus.

rob_ctl_parity Parity for rob_master_id and rob_trans_id. Parity is even.
(There will always be an even number of 1’s for data and
parity combined.) Note: Due to the addition of the ROB
multiplexer, there is a memory controller and I/O controller
version of this bus.

rmi_cmc_gnt CMC Runway Output Bus Grant. When asserted, the
CMC/RRDR drives the tri-state Runway Output Busses.

ioc_pdh_rr_req I/O controller PDH memory read return request. Asserted
when there is a PDH memory read return transaction ready for
the Runway bus. Held asserted until rmi_pdh_rr_gnt is
asserted and there are no more PDH memory read return
transactions ready for the Runway bus.

rmi_pdh_rr_gnt I/O controller PDH memory read return grant. A PDH
memory read return begins on the first state when both
ioc_pdh_rr_req and rmi_pdh_rr_gnt are asserted. The
transaction requires four data states (one cache line) with no
embedded idle cycles.

ioc_stop_pdh I/O controller stop PDH memory reads. Asserted to flow
control the Runway bus to prevent any memory read
transactions. (CLIENT_OP should change to RET_ONLY.)

cmc_mem_rr_req Memory read return request. Asserted when there is a
memory read return transaction ready for the Runway bus.
Held asserted until rmi_mem_rr_gnt is asserted and there are
no more memory read return transactions ready for the
Runway bus.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 37of 44

Signal Description
rmi_mem_rr_gnt Memory read return grant. A Runway memory read return

begins on the first state when both cmc_mem_rr_req and
rmi_mem_rr_gnt are asserted. The transaction requires four
data states (one cache line) with no embedded idle cycles.

cmc_0_length_rr I/O controller zero length read return strobe. Asserted with
cmc_0_length_trans_id to indicate a 0 length read return to
the I/O controller.

cmc_0_length_trans_id[3:0] I/O controller zero length read return transaction ID.
cmc_shared Shared read return flag. Asserted with cmc_mem_rr_req to

indicate a shared return.
ioc_mem_read_req I/O controller memory read request. Asserted when there is a

memory read transaction ready for the Runway bus. Held
asserted until rmi_mem_read_gnt is asserted and there are
no more memory read transactions ready for the Runway bus.

rmi_mem_read_gnt I/O controller memory read grant. An I/O controller memory
read begins on the first state when both ioc_mem_read_req
and rmi_mem_read_gnt are asserted. The transaction
requires one address state.

ioc_0_length I/O controller zero length read hint. Asserted with
ioc_mem_read_req to hint that if the read is not COPYOUT,
then the memory controller does not need to return data with
the memory read return.

ioc_mem_write_req I/O controller memory write request. Asserted when there is a
memory write transaction ready for the Runway bus. Held
asserted until rmi_mem_write_gnt is asserted and there are
no more memory write transactions ready for the Runway bus.

rmi_mem_write_gnt I/O controller memory write grant. An I/O controller memory
write begins on the first state when both ioc_mem_write_req
and rmi_mem_write_gnt are asserted. The transaction
requires one address state and four data states (one cache line)
with no embedded idle cycles.

ioc_io_read_req I/O controller I/O read request. Asserted when there is an I/O
read transaction ready for the Runway bus. Held asserted until
rmi_io_read_gnt is asserted and there are no more I/O read
transactions ready for the Runway bus.

rmi_io_read_gnt I/O controller I/O read grant. An I/O controller I/O read
begins on the first state when both ioc_io_read_req and
rmi_io_read_gnt are asserted. The transaction requires one
address state.

ioc_io_rr_req I/O controller I/O read return request. Asserted when there is
an I/O read return transaction ready for the Runway bus. Held
asserted until rmi_io_rr_gnt is asserted and there are no more
I/O read return transactions ready for the Runway bus.

rmi_io_rr_gnt I/O controller I/O read return grant. An I/O controller I/O read
return begins on the first state when both ioc_io_rr_req and
rmi_io_rr_gnt are asserted. The transaction requires one data
state (8-bytes).

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 38of 44

Signal Description
ioc_io_write_req I/O controller I/O write request. Asserted when there is an I/O

write transaction ready for the Runway bus. Held asserted
until rmi_io_write_gnt is asserted and there are no more I/O
write transactions ready for the Runway bus.

rmi_io_write_gnt I/O controller I/O write grant. An I/O controller I/O write
begins on the first state when both ioc_io_write_req and
rmi_io_write_gnt are asserted. The transaction requires one
address state and one data states (8-bytes) with no embedded
idle cycles.

cmc_sync_done_req Sync done request. Asserted when there is a sync done
transaction ready for the Runway bus. Held asserted until
rmi_sync_done_gnt is asserted and there are no more sync
done transactions ready for the Runway bus.

rmi_sync_done_gnt Sync done grant. A sync done begins on the first state when
both cmc_sync_done_req and rmi_sync_done_gnt are
asserted. The transaction requires one state.

cmc_purge_alloc_done_req Purge allocate done request. Asserted when there is a purge
allocate done transaction ready for the Runway bus. Held
asserted until rmi_purge_alloc_done_gnt is asserted and
there are no more purge allocate done transactions ready for
the Runway bus.

rmi_purge_alloc_done_gnt Purge allocate done grant. A purge allocate done begins on the
first state when both cmc_purge_alloc_done_req and
rmi_purge_alloc_done_gnt are asserted. The transaction
requires one state.

rsi_broad_error_req Broadcast error request. Asserted when there is a broadcast
error to send to the Runway bus. Held asserted until
rmi_broad_error_gnt is asserted and there are no more
broadcast error transactions ready for the Runway bus.

rmi_broad_error_gnt Broadcast error grant. A broadcast error begins on the first
state when both rsi_broad_error_req and
rmi_broad_error_gnt are asserted. The transaction requires
one state.

ioc_stop_io Stop I/O transactions. Asserted to prevent I/O reads and I/O
writes from being issued on the Runway bus. Assuming that
the RMI block obeys the Runway meta-protocol and only
issues one I/O transaction every two Runway states, then there
could be up to two I/O transactions received on the Runway
Input Bus once ioc_stop_io is asserted on the Runway Output
Bus.

ioc_cmd_reset Command reset. Asserted for 1 state by the I/O controller
after a broadcast reset command (WRITE_SHORT) is seen on
the Runway Input Bus.

Table 12: Runway Output Bus Signal Definitions

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 39of 44

Runway Transaction
Type io

c_
pd

h_
rr

_r
eq

cm
c_

m
em

_r
r_

re
q

io
c_

m
em

_r
ea

d_
re

q

io
c_

m
em

_w
ri

te
_r

eq

io
c_

io
_r

ea
d_

re
q

io
c_

io
_r

r_
re

q

io
c_

io
_w

ri
te

_r
eq

cm
c_

sy
nc

_d
on

e_
re

q

cm
c_

pu
rg

e_
al

lo
c_

do
ne

_r
eq

rs
i_

br
oa

d_
er

ro
r_

re
q

cm
c_

sh
ar

ed

cm
c_

0_
le

ng
th

_r
r

io
c_

0_
le

ng
th

HOST_CONTROL Read Return X
HOST_CONTROL Read Return X
SHAR_RTN Read Return X X
(0 length read return to IOC) X
READ_SHAR_OR_PRIV X
READ_CURRENT X
READ_PRIV X
READ_PRIV (0 length hint) X X
WRITE_BACK X
READ_SHORT X
(I/O read return from IOC) X
WRITE_SHORT X
SYNC_DONE X
DPURGE_ALLOC_DONE X
BROAD_ERROR X

Table 13: Runway Output Bus Transaction Encoding

1.10 Runway Transaction Summary

Table 14 summarizes the Runway transactions that Astro supports. Astro does partial TTYPE
decoding in compliance with Appendix B of the Runway Specification (Rev 1.3). The
TTYPE[0:7] field is the Runway transaction type. The Master field is marked with “ I” or “M”
if the I/O controller or the memory controller can master the transaction respectively. The
Receive field is marked with “ I” , “M” , or “B” if the I/O controller, memory controller, or both
can receive the transaction respectively. The Coherent field is checked for coherent transactions.
The # Cycles field identifies the minimum number of cycles the transaction requires including
data cycles. Astro does not generate any imbedded idle cycles in Runway transactions. Astro is
tolerant of Runway devices that do generate imbedded idle cycles in Runway transactions.

Runway Transaction TTYPE[0:7] M
as

te
r

R
ec

ei
ve

C
oh

er
en

t

C

yc
le

s

DIR_ERROR 0x08 1
ITLB_PURGE_DONE 0x10 1
DTLB_PURGE_DONE 0x14 1
SYNC_DONE 0x18 M 1

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 40of 44

Runway Transaction TTYPE[0:7] M
as

te
r

R
ec

ei
ve

C
oh

er
en

t

C

yc
le

s

WRITE_SHORT_DONE 0x1A 1
DPURGE_ALLOC_DONE 0x1C M 1
BROAD_ERROR 0x48 M I 1
ITLB_PURGE 0x50 1
DTLB_PURGE 0x54 1
HOST_CMD 0x58 1
HOST_CMD 0x59 1
UPDATE_DUP_TAGS 0x5C 1
CACHE_SYNC 0x60 I 9 1
DMA_SYNC 0x64 I 9 1
IFLUSH 0x68 I 9 1
IFLUSH_ENTRY 0x69 9 1
CLEAR_WORD 0x70 9 2
CLEAR_DBL 0x72 9 2
DFLUSH 0x74 I 9 1
DFLUSH_WR 0x75 I 9 1
DFLUSH_RD 0x76 I 9 1
DFLUSH_RD_WR 0x77 I 9 1
DPURGE 0x7C I 9 1
DPURGE_ALLOC 0x7E I 9 1
WRITE_BURST 0x80 5
WRITE_SHORT (Memory) 0x81 2
WRITE_SHORT (I/O) 0x81 I I 2
WRITE 0x90 M 5
WRITE16 0x92 3
C2C_WRITE 0x94 B 5
WRITE_BACK 0x98 I M 5
FLUSH_BACK 0x9C M 5
WRITE_P_UPD 0xB8 9 5
WRITE16_P_UPD 0xBA 9 3
WRITE_PURGE 0xBC 9 5
WRITE16_PURGE 0xBE 9 3
READ_BURST 0xC0 9 1
READ_SHORT (Memory) 0xC1 9 1
READ_SHORT (I/O) 0xC1 I I 9 2
FETCH_AND_DEC 0xC5 9 1
FETCH_AND_INC 0xC7 9 1
READ 0xD0 M 1
READ_BS 0xD4 M 1
READ (PDH Memory Space) 0xD0 I 1
READ_BS (PDH Memory Space) 0xD4 I 1
READ_CURRENT 0xF0 I B 9 1
READ_SHAR_OR_PRIV 0xF4 I B 9 1
READ_PRIV 0xF8 I B 9 1
CLEAR_PRIV 0xFC B 9 1

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 41of 44

Runway Transaction TTYPE[0:7] M
as

te
r

R
ec

ei
ve

C
oh

er
en

t

C

yc
le

s

HOST_CONTROL Read Return N/A M I 4
SHAR_RTN Read Return N/A M I 4
READ_SHORT (I/O) Read Return N/A I I 1

Table 14: Runway Transaction Summary

1.11 Transaction Examples

This section walks through some transaction flow examples to develop some high level
understanding for Astro’s Runway Bus Interface.

1.11.1 Processor Initiated Write Transactions

Processor initiated writes are received from the Runway bus by the RSI. The RSI forwards write
address and data to the CMC and WDR respectively on the Runway Input Bus. If the write is a
cache-to-cache copy with the IOC’s master ID, then the write is also sent to the I/O controller.
The CMC allocates a CMI in the write coherency map to keep track of the write until it i s issued
to memory. The CMC places a CMI for the write in the WQ. When the CMI for the write reaches
the top of the WQ, the CMC will pop the CMI off the WQ and issue the write address to the MC.
The MC will pull the write data from the WDR and tell the CMC when the write is completed to
memory. The CMC will free the write coherency map entry for the write.

1.11.2 Processor Initiated Non-Coherent Read Transactions

Processor initiated non-coherent reads are received from the Runway bus by the RSI. The RSI
forwards the read address to the CMC on the Runway Input Bus. The CMC allocates a CMI in
the read coherency map to keep track of the read until the read return phase is complete. If there
is nothing in the RQ, then a medium RQ bypass path is enabled to issue the read address directly
to the MC with 1 state of delay. Otherwise, the CMC places the CMI for the read in the RQ
where it will t ake a minimum of 2 states to issue to the MC.

When the CMI for the read reaches the top of the RQ, the CMC will check the read coherency
map for read/write confli cts. If there is a confli ct, then the CMC will i ssue writes to the MC (if
necessary) to clear the confli ct. Once the write confli ct is cleared, the CMC will pop the CMI for
the read off the RQ and issue the read address to the MC.

The MC will read data from memory and place the read return data in the RRDR. The MC will
give the CMI for the read return to the CMC early so the CMC can arbitrate for the Runway bus
and not waste any states in returning the read data. The CMC will place the CMI for the read
return in the RRQ.

Once the CMI for the read return reaches the top of the RRQ, the CMC will pop the CMI for the
read return off the RRQ and issue the read return from the RRDR to the RMI block via the

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 42of 44

Runway Output Bus. The RMI block will i ssue the read return on the Runway bus. The CMC
will free the read coherency map entry for the read.

1.11.3 Processor Initiated Coherent Read Transactions

Processor initiated coherent reads are received from the Runway bus by the RSI. The RSI
forwards the read address to the CMC on the Runway Input Bus. The RSI also forwards the read
address to the I/O controller to be snooped in the I/O cache. The CMC allocates a CMI in the
read coherency map to keep track of the read until the read return phase or coherency response
phase is complete. The CMC places the CMI for the read in the CRQ. If there is nothing in the
RQ, then a medium RQ bypass path is enabled to issue the read address directly to the MC with 1
state of delay. Otherwise, the CMC places the CMI for the read in the RQ where it will t ake a
minimum of 2 states to issue to the MC.

When the CMI for the read reaches the top of the RQ, the CMC will check the read coherency
map for read/write confli cts. If there is a confli ct, then the CMC will i ssue writes to the MC (if
necessary) to clear the confli ct. Once the write confli ct is cleared, the CMC will pop the CMI for
the read off the RQ and issue the read address to the MC.

When the CMI for the read reaches the top of the CRQ and all coherency responses are
completed, then the CMC will record the coherency response in the read coherency map and
check for read/write confli cts. If there is a confli ct, then the CMC will send writes from the WQ
to the MC until the confli ct is cleared, wait (if necessary) for the read to reach the top of the RQ,
pop the CMI for the read off the CRQ, and issue the read address to the MC. Otherwise, the
CMC will pop the CMI for the read off the CRQ without issuing the read to the MC. (If there is
not a read/write confli ct at the end of the coherency response phase, then there will never be one.
We are certain that the RQ has sent, or will send, the read to the MC, so the CRQ does not have
to do it.) If the read return data for the read is already in the RRDR and the coherency response
is COPYOUT, then the CMC will free the read coherency map entry for the read. If the read
return data for the read is already in the RRDR and the coherency response is OK or SHARED,
then the CMC will place the CMI for the read in the RRQ to schedule a read return. Otherwise,
the read return will be scheduled once the read return data is available.

Note: It is possible for the RQ to issue a read to the MC, later have a read/write confli ct, detect
the confli ct at the end of the coherency response phase and have the CRQ reissue the read to the
MC. In this case, the MC must never let the two reads pass each other. The only time the MC
will allow two confli cting reads to pass each other is when the first read is marked, the second
read is not marked, and the marked read fence is asserted. This can not happen since any read
reissued from the CRQ will be marked.

The MC will read data from memory and place the read return data in the RRDR. The MC will
give the CMI for the read return to the CMC early so the CMC can arbitrate for the Runway bus
and not waste any states in returning the read data. If the coherency response phase is complete,
the CMC will place the CMI for the read return in the RRQ to schedule a read return.

Once the CMI for the read return reaches the top of the RRQ, the CMC will pop the CMI for the
read return off the RRQ and issue the read return from the RRDR to the RMI block via the
Runway Output Bus. The RMI block will i ssue the read return on the Runway bus. The CMC
will free the read coherency map entry for the read.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 43of 44

1.11.4 I/O Controller Initiated Write Transactions

I/O Controller initiated writes are sent to the Runway Output Bus on the rob_addr_data bus.
The RMI masters the write on Runway to be reflected back into Astro by the RSI. From this
point on, the IOC initiated write looks li ke a Runway initiated write.

1.11.5 I/O Controller Initiated Coherent Read Transactions

I/O Controller initiated coherent reads are sent to the RMI on the rob_addr_data bus. The RMI
masters the read on Runway to be snooped by all processors and reflected back into Astro by the
RSI. The middle part of an I/O controller initiated coherent read looks identical to a processor
initiated coherent read described in Section 1.11.3. After the read return data hits the Runway
bus, it is reflected onto the Runway Input Bus by the RSI block and sent to the I/O controller.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 44of 44

