
Technical Reference Manual for OEMs

HP Model 745

HP Part No. A4964-90603 Printed in USA

April 1999

Edition E1199 Special Online Edition

Legal Notices

Manual Content

Information in this manual is subject to change without notice.

Hewlett-Packard makes no warranty of any kind about this manual, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or direct, indirect, special, incidental, or consequential damages about the furnishing, performance, or use of this material.

Copyright © Hewlett-Packard Company 1999. This document contains information which has been protected by copyright. All rights are reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copyright laws.

Software mentioned and documentation is based in part on the Fourth Berkeley Software Distribution under license from the Regents of the University of California.

Restricted Rights Legend

Use, duplication, or disclosure by the United States Government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at FARs 52.227.7013.

Printing History

The printing date and edition number shown is the current edition of this manual. The printing date changes when a new edition is printed. Minor changes may be made at reprint without changing the printing date.

April 1999, Edition 1

Safety Symbols and Conventions

This manual uses the following conventions:

<i>NOTE:</i> Notes contain important information set off from the text	t.
--	----

CAUTION: Caution messages indicate procedures which, if not observed, could result in damage to equipment. Do not proceed beyond a CAUTION sign until the indicated conditions are fully understood and met.

WARNING: Warning messages indicate procedures or practices which, if not observed, could result in personal injury. Do not proceed beyond a WARNING sign until the indicated conditions are fully understood and met.

1 General Information

Model 745 Industrial System 1-2 Product Description 1-2 Supported Configurations 1-2 Model 745 Industrial System Functional Description 1-5 Environmental Specifications for Monitors 1-6 Model 744 Board Computers 1-7 Product Description 1-7 1-8 Supported Configurations 1-9 Model 744 Memory 1-9 System Graphics 1-9 Model 744 External Devices 1-9 Keyboard and Mouse 1-9 Model 744 Cables 1-9 Model 744 Functional Description 1-11 Model 744 Block Diagram 1-12 CPU Circuit 1-13 Boot ROM Circuit 1-13 Graphics Circuit 1-13 Model 744 Memory Controller Circuit 1-14 LED Displays 1-15 I/O Controller ASIC 1-15 I/O Expansion 1-20 I/O Expansion Block Diagrams 1-20 Original Equipment Manufacturer (OEM) Support Overview 1-21 Standard Support 1-21 Additional OEM Support Programs 1-21

2 References

HP Hardware Manuals 2-2 Installation Guides 2-2 Service Manuals 2-2 Diagnostic Manuals 2-3

3 Quality

Safety Compliance Programs 3-2
Introduction 3-2
Underwriter's Laboratories (USA) / Canadian Standards Association (Canada) 3-2
TUV Product Services(Germany) 3-2
Electromagnetic Compatibility Programs 3-3
Federal Communications Commission (USA) 3-3
European Community 3-3
Voluntary Control Council for Interference (Japan) 3-4
Canadian Department of Communication 3-4
Taiwan BQIC 3-4
Australian C-Tick 3-4

Electromagnetic Compatibility Test Suites 3-5

Climatic and Dynamic Environmental Ruggedness 3-8

Statistical Reliability 3-12 Annualized Failure Rate Projections 3-12 Mean Time Between Failure Computations 3-12

4 Mechanical Information

Model 744 Board Computer 4-10 Key Component 4-10 Interface Connectors 4-11 Mechanical Dimensions 4-12 Weights 4-21

Model 745 Chassis and Modules 4-2

Mounting and Support 4-22 Mechanical Drawings 4-22 Conversion Cables 4-22

Chassis Parts and Models 4-23

5 Electrical Information

Video Connector Pinouts 5-3 Audio Connector Pinouts 5-6 HP Parallel Connector Pinouts 5-8 RS-232 Connector Pinouts 5-10 AUI LAN Connector Pinouts 5-12 Single-Ended SCSI Connector Pinouts 5-14 PS/2 Connector Pinouts 5-16 Backplane Connector Pinouts 5-17 Real-Time Clock (RTC) Battery Information 5-31 Battery Specifications 5-31 Video Output Signal Specifications 5-31

6 Power Requirements

Power Supply Specifications 6-2

Chassis Power Distribution 6-3

Monitor Power Specifications 6-6

General Information

1

The General Information Chapter provides general information on the Model 745 Industrial System, environmental specifications for the supported monitors, and OEM support.

Model 745 Industrial System

The sections that follow contain the Model 745 Industrial System product description and the functional description.

Product Description

The 745 model incorporates the HP Model 744 Board Computer that is based on the PA-RISC 7300LC central processing unit (CPU). Table 1-1 summarizes the features of the Model 745.

Table 1-1Model 745 Industrial System Features

Feature	Functionality
Operating system	HP-UX - Supports SICL libraries and Rocky Mountain Basic (RMB)
System board	See the feature set for the Model 744 Board Computer
Monitors	17 or 19-inch color monitors
	72 or 75 Hz refresh rate, multi-mode
Mass storage module	Up to five of the following devices (ony two removable media devices allowed):
	4 or 9 GB SE hard disk drive
	DDS-2, 4 GB native capacity yielding up to 8 GB w/Data compression.
	3.5-inch flexible disk drive
	CD-ROM drive
EISA module, or	4 EISA accessory cards
PCI module	4 PCI accessory cards
Power supply	One 400 watt power supply

Supported Configurations

This section discusses the following supported configurations: mass storage, monitors, builtin interfaces, EISA module, and PCI module.

Mass Storage

Model 745 uses several factory-installed mass storage devices. One or two removable media devices may be installed, and a total of five devices are possible. Model 745 mass storage devices are factory installed with the removable media drives accessed from the front of the system. Users may reconfigure devices to reverse the access. Hard disk drives are typically installed in any available storage bay.

Mass storage devices are also available as the following upgrades:

- HP A4484A 4 GB SE SCSI Hard Drive Upgrade
- HP A5006A 9 GB SE SCSI Hard Drive Upgrade
- HP A2645A 3.5-inch Flexible Disk Drive Upgrade
- HP A4496A CD-ROM Disk Drive Upgrade
- HP A4307A 4-8 GB DDS (DDS-2, 4 GB native, 8 GB with data compression) Tape Drive Upgrade

Monitors

I

Table 1-2 lists the color monitors supported. Grayscale monitors are not supported.

Table 1-2Model 745/132L Supported Monitors

Туре	Resolution	Comments
17-inch color	1280 by 1024	
19-inch color	1280 by 1024	

SCSI Interface The mass storage module has a SCSI connector for connecting external SCSI device cables. When the external SCSI interface connector is not used, a SCSI terminator should be plugged into the SCSI connector.

A cable from the mass storage module connects to the system board's SCSI connector and must be connected for internal drives to operate. SCSI interface circuits use high-density, shielded connectors. The internal cable length is 1.5 meters (4.9 feet), including the .5 meter cable connecting the board computer to the mass storage module.

The last device on each SCSI bus must be terminated. Internal drives do not have terminators enabled. The SCSI bus terminator shipped with the Model 745 must be installed on the external bus connector if no external devices are connected. The single-ended terminator is order number K2291 (part number A1658-62016).

General Information Model 745 Industrial System

EISA Module The Model 745 is available with a 4-slot EISA module. Table 1-3 shows the EISA accessory cards that are supported.

EISA Bus Performance The ideal slave read/write transfer rate is 25/25 MB/sec.

Table 1-3 Supported EISA Accessory Cards

Product Number	Product Name	Quantity Supported	Notes
HP E2070C	Instrument HP-IB	Up to 4	
HP E2071C	High-Speed Instrument HP-IB	Up to 4	

PCI Module The Model 745 is available with a module that provides four slots for customer provided PCI accessory cards. The module supports the +5 Vdc PCI bus signalling card type.

Model 745 Industrial System Functional Description

The section that follows contains a block diagram of the Model 745 Industrial System.

Block Diagram

Figure 1-1 shows the functional architecture of the Model 745 industrial system.

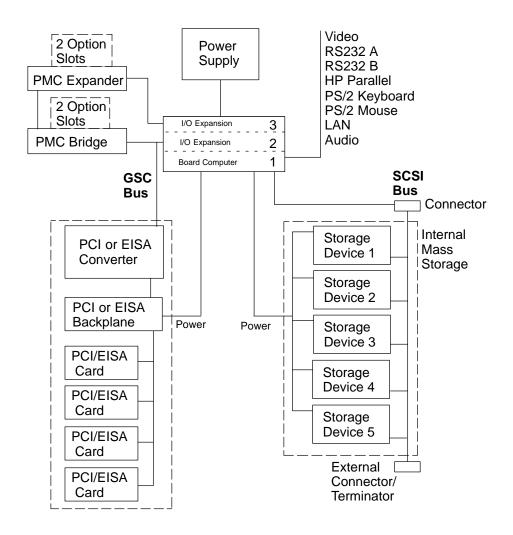


Figure 1-1 Model 745 Functional Block Diagram

Environmental Specifications for Monitors

This section describes the environmental specifications for the HP A4490A and HP A4575A color monitors.

Table 1-4 lists the operating, non-operating or storage, and recommended specifications for altitude, humidity, and temperature for the monitors.

Environmental Condition	Specification
Altitude, non-operating	15,240 m (49,530 ft.)
Altitude, operating	3,658 m (11,888 ft.) ^a
Humidity, nonoperating or storage	5% to 95% RH
Humidity, operating	10% to 80% RH
Humidity, recommended operating at 22° C	Non-condensing RH
Temperature, nonoperating or storage	-40° C to 60° C
Temperature, operating	0° C to 40° C
Temperature, recommended operating	10° C to 40° C

Table 1-4Environmental Specifications for Monitors

a. Temperature derating above 2,500-m (8,000 ft.): 1.1° C for each 1,000 feet above 7,500 feet.

Model 744 Board Computers

The sections that follow contain the Model 744 Board Computer product descriptions and functional descriptions, as implemented in the Model 745 industrial controller (there are differences in terms of available options).

Product Description

HP Model 744 Board Computers are based on the PA 7300LC CPU.

The board computer is complete with the core I/O of an HP-PA workstation in a single-slot solution with expandability for more I/O or RAM in a two-slot or three-slot solution.

Figure 1-2 illustrates the front panel of Model 744 Board Computers.

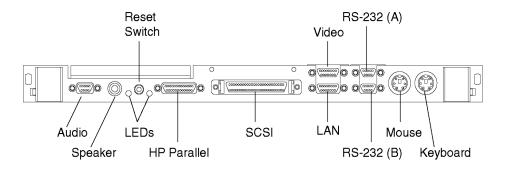


Figure 1-2 Model 744 Board Computer Front View

.

Table 1-5 lists the feature sets of the Model 744 Board Computers

Table 1-5 Model 744/132L (A4500A) and 744/165L (A4511A) Features

Feature	Specifications	
Slot Configuration	Single Slot - Standard features	
	Two Slots - PMC Bridge Adapter (A4504A)	
	Three Slots - PMC Expansion Adapter (A4509A)	
СРИ	132 MHz PA-RISC PA7300-LC 128 KB Primary internal cache (64 KB instruction cache, 64KB data cache)	
	165 MHz PA-RISC PA7300-LC 128 KB Primary internal cache (64 KB instruction cache, 64KB data cache) 512 KB Secondary external cache	
Clocks	Battery backed real-time clock Interval timers (one 32-bit and two 16-bit) Watchdog timer	
Operating System	HP-UX 10.20 or later - Supports SICL libraries - Support Rocky Mountain Basic (RMB)	
User Interface	HP VUE graphical user interface (HP-UX) HP CDE graphical user interface (HP-UX)	
Compatibility	Source and binary code compatible with the Series 700 product family	
Main Memory	Single Slot Configuration - 64 to 256 MB (A4503A, A4449A, A6005A) Two Slots Configuration - 64 to 1024 MB	
Standard Features	Internal SCSI-2 single-ended bus Audio Two asynchronous RS-232-C ports One HP parallel port One LAN AUI port Two mini-DIN PS/2 ports One site for memory card stack Video connector for onboard graphics	
Two Slot Upgrades	PMC Bridge Adapter (A4504A) with two PMC sites - supports PMC Graphics Card (A4979A) or thrid party cards	
Three Slot Upgrades	PMC Expansion Adapter (A4509A) - supports PMC Graphics Card (A4979A) or thrid party cards	

Supported Configurations

This section discusses the following supported configurations: memory, system graphics, external devices, keyboard and mouse, and cables.

Hewlett-Packard only supports products having Hewlett-Packard approved parts, accessories, peripherals, operating systems, and application programs.

Model 744 Memory

Standard memory is Error Checking and Correcting (ECC) RAM cards. Up to four RAM cards may be installed. RAM upgrades include:

- HP A4503A 64 MB RAM Card
- HP A4449A 128 MB RAM Card
- HP A6005A 256 MB RAM Card

Model 744 Board Computers use custom TSOP-based RAM cards. Use of TSOP packaging allows adequate cooling in single-slot installations.

There is one stack location for RAM cards on the Model 744.

When mixing the 128 MB and 256 MB RAM cards with cards of a different capacity, the 128 MB and 256 MB card(s) must always be in the lower memory slots.

System Graphics

I

The HP-UX operating system supports up to four displays.

Model 744 External Devices

Model 744 supports the following external devices:

• LAN Transceiver (Medium Attachment Unit)

HP 28641B ThinLAN Ethernet Transceiver (order number A2670A)

HP 28685B Ethertwist Transceiver (order number A2671A)

HP 28683A Fiber Optic Hub/Transceiver

- Speaker: 8 ohm impedance with ¹/₈-inch sub-miniature stereo connector
- Single-ended SCSI through the onboard SE SCSI adapter

Keyboard and Mouse

Model 744 supports the mouse with mini-DIN connector (PS/2) and keyboard with mini-DIN connector (PS/2) included in the HP A4030D Localization Kit.

Model 744 Cables

Table 1-6 and Table 1-7 show the part numbers for standard cables and conversion cables used to interface with the Model 744 I/O backplanes.

Drawings showing mechanical and electrical characteristics for these cables are available. Refer to chapter 4 in this manual for more information.

Table 1-6Model 744 Standard Cables

Product Number	Interface	Cable Type
HP 24524G	RS-232	3-meter terminal cable; 9-pin female to 25-pin male
HP 24524H	RS-232	3-meter modem cable; 9-pin female to 25-pin female
HP C2950A	HP Parallel	DB 25-pin male to 36-pin Centronics male
HP 92284A	HP Parallel	DB 25-pin male to 25-pin male
HP K2296	SCSI-2	0.9 meter high-density 50-pin to standard bail lock ^a

a.Additional lengths are available.

Conversion cables provide a way to connect a standard cable to the high-density connectors on the Model 744 front panel.

All conversion cables are 762 plus/minus 30mm (30 plus/minus 1.18 inch) long.

Table 1-7Model 744 Conversion Cables

Product Number	Interface	Cable Type
HP A4300A	HP parallel	High-density 25-pin to standard 25-pin female
HP A4301A	RS-232	High-density 9-pin to standard 9-pin male
HP A4302A	Audio	High-density 9-pin to stereo line-in
HP A4303A	LAN	High-density 15-pin to 15-pin AUI
HP A4223A	Video -VGA	High-density 15-pin to standard 15-pin female
HP A4305A	Video - EVC	High-density 15-pin to EVC connector

Model 744 Functional Description

This section describes the major components of the Model 744 board computers

The system board contains the following functionality:

- Boot ROMs
- CPU
- Graphics
- I/O controller, which controls these interface circuits:
 - Audio
 - HP Parallel
 - LAN
 - RS-232-C
 - SE SCSI
 - Keyboard and mouse
 - Battery-backed Real Time/Time-of-Day clock
- Memory controller

Figure 1-3 shows the major components of the Model 744.

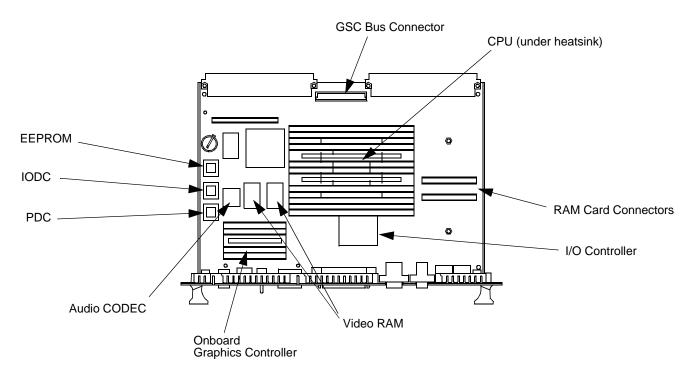
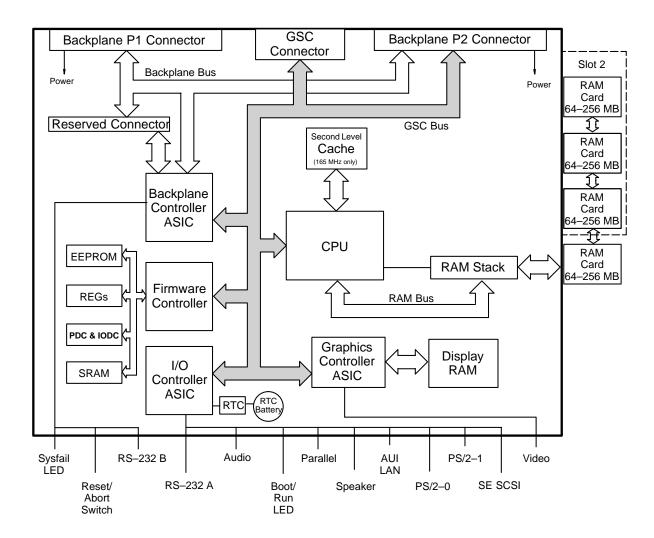



Figure 1-3 Model 744 Board Computer Functional Components

Model 744 Block Diagram

Figure 1-4 illustrates the functional architecture of the Model 744 system board.

Model 744 Functional Block Diagram

CPU Circuit

The Model 744 uses a Hewlett-Packard PA-RISC PA7300-LC CPU chip. The CPU chip is the heart of the CPU circuit. It executes instructions and controls the other circuits.

Table 1-8 lists the CPU performance figures for the Model 744 with HP-UX.

Table 1-8Model 744 CPU Performance

Model 744 Performance Based on HP-UX 10.20	132 MHz	165 MHz
SPECint95	5.90	7.90
SPECfp95	6.22	7.64

Boot ROM Circuit

The Boot ROM circuits have Boot ROMs containing 2x526 Kilobytes of information that does the following:

- Manages the internal interface configurations
- Searches for and boots an operating system
- Self-tests the board computer's main circuits
- Starts the CPU functions

An EEPROM stores the following information:

- Internal interface configurations
- LAN ID number
- System board serial number

NOTE: The workstation's LAN ID number's last 6 characters are labeled on the EEPROM. The first group of six digits are typically "0060b0" (the HP-owned prefix).

A PLL Clock Module generates the system clock, on which all timing is based.

Graphics Circuit

System boards have a graphics controller ASIC and the display RAM. Resolution and refresh rate can be configured using the boot console handler for several types of monitors.

A keyboard must be connected to the PS/2 0 port if graphics are used as part of the console path. When a graphics device is specified as the console path, the boot ROM first checks for a keyboard by using the keyboard search list. If a keyboard is not found in this search list, graphics are not enabled.

Table 1-9 summarizes the graphics performance figures for the Model 744 with HP-UX.

Table 1-9Model 744 Graphics Performance

On-board HP Visualize-EG Graphics	132 MHz	165 MHz
X11 Lines	5.74M	5.96M
Xmark93	33.11	36.47
PLBsurf93	49.7	57.0
PLB wire93	116.1K	135.4K
2D/3D vectors/sec	3.1M	3.5M

Model 744 Memory Controller Circuit

The CPU's memory controller circuit manages memory. Up to 1 GB of RAM may be installed. An Error Checking and Correcting (ECC) function checks memory word read/write operations. The ECC function detects single-bit and double-bit errors. Single-bit errors are corrected. Double-bit errors are detected but not corrected. The memory controller circuit uses a 132-bit memory bus. One RAM card location is used, behind the PS/2 connectors on the system board. Up to four RAM cards are supported.

Physical RAM slot positions are:

Bottom RAM card, slot 0 Second RAM card, slot 1 Third RAM card, slot 2 Fourth RAM card, slot 3

RAM Cards When mixing RAM cards of different capacities that include 128 MB and 256 MB cards, the 128 MB and 256 MB cards must be installed into the lowest numbered memory sites. Memory mapping at turn on determines the size of the card in each location.

LED Displays

LED Meanings

Model 744 Board Computers have two LEDs that indicate various system functions: a system failure LED and a functional LED. See Table 1-10.

SYSFAIL (Red)	POWER (Green)	Meaning	Possible Solution
Off	Off	No Power	Check for board seating in chassis.
On	2Hz Flash	Normal Power-on/self- test	
On	Off	Memory Failure	Troubleshoot for failed RAM card or problem with the RAM connection.
On	1 Flash/sec.	CPU (board) Failure	Replace the system board.
On	4 Flash/sec.	No console identified	Check the console search path and keyboard connec- tions. If no problem is found, replace the system board.
On	On	OS is booted with fail- ure	Check the Operating System.
Off	On	OS is booted OK	

Table 1-10

I/O Controller ASIC

I/O control by the system board's I/O controller ASIC includes the following interfaces:

- Audio
- AUI LAN
- HP Parallel
- PS/2 Ports 0 and 1
- RS-232 Port A
- Single-Ended SCSI
- Speaker

The battery-backed real-time clock is also implemented in the I/O controller ASIC.

The connectors for the system board's built-in interfaces are on the front panel. Most use micro-miniature connectors that require special conversion cables in order to use standard interface cables.

Table 1-11 summarizes I/O performance figures for the Model 744

Table 1-11Model 744 I/O Performance

І/О Туре	Performance	Notes
Audio	48 KHz	Sampling rate
HP Parallel	300+ KB/second	With DMA
	200 KB/second	Sustained
LAN	10 Mb/second	
PS/2	2.5 K 11-bit samples/sec	
RS-232	460.8 Kbps	
SE SCSI	5 MB/second	Synchronous
	1.5 MB/second	Asynchronous

The sections that follow explain the functions of the interfaces.

Audio Model 744 Board Computers provide audio input and output, in stereo, with a 16-bit coder-decoder (CODEC) over a frequency range of 25-20,000 Hz. A stereo headphone miniplug (8 ohms impedance) provides output. The stereo line-in and mono microphone miniplugs provide input with the HP A4302A Audio Cable.

The CODEC combines stereo A/D converters for microphone and line input levels. D/A converters for driving headset and line outputs are used. The input sampling rate and format are programmable, as are the input gain control (used for software control of recording levels) and output attenuation.

A 1/8-inch mini-jack is used for the speaker out connection. The other audio signals are on a 9-pin micro D-sub connector. The output is capable of driving a minimum of 8 ohms. It can also be used for higher impedance devices with little or no additional distortion.

A voice-quality audio output may be used.

For information on programming for audio, refer to *Using the Audio Developer's Kit* (B2355-90069) and the man page *audio*.

Table 1-12 lists the Model 744 audio specifications.

Table 1-12Model 744 Audio Specifications

Function	Range
Headphone maximum output level	2.75 V pp at 50 ohms
Input sensitivity	Line in, 2.0 V pp at 47 K ohms microphone, 22 mV at 1 K ohm
Programmable input gain	0 to 22.5 dB in 1.5 dB steps
Programmable output attenuation	0 to 96 dB in 1.5 dB steps
Programmable rates	8, 11.025, 16, 22.05, 32, 44.1, 48 KHz
Signal to noise ratio	Headphone, 61 dB
	Line in, 61 dB
	Microphone, 57 dB

NOTE:

Audio CD ROMs cannot output to the audio out connector.

AUI LAN LAN circuits use the Ethernet/IEEE 802.3 standard interface. Only the Attachment Unit Interface (AUI) version is used; no BNC connector is provided for ThinLAN. The AUI connector enables connections to an external MAU using the HP A4303A adapter cable. Table 1-13 summarizes the LAN AUI interface specifications.

Table 1-13LAN AUI Specifications

Connector type	15-pin MDSM
Controller	Intel 82596CA compatible megacell
Data rate	10 Mbits/sec
Electrical interface	AUI
Туре	IEEE 802.3, Ethernet 1.0

Single-Ended SCSI The 8-bit single-ended implementation is compatible with the current Series 700 products and supports 5 MB/sec data transfer rates.

The SCSI bus is terminated to 3.3 volts through 127 ohms on the system board. Internal mass storage devices must have their terminator removed or disabled. If an external disk drive is used, an active terminator must be used on the last drive's uncabled connector.

Table 1-14 summarizes the specifications for the single-ended SCSI interface.

Controller	NCR 53C710 compatible macrocell, Rev D
Connector type	SCSI-II, ALT-1 50-pin high-density thumbscrew
Data rate	Asynchronous, 1.5 MBs/second Synchronous, 5 MB/second
Device limits	7 internal and/or external devices plus the host controller ^a
Maximum external cable length	4.5 meters (14.76 feet)
Туре	SCSI-II (ANSI X3.131-1986), 8-bit, single-ended

Table 1-14Single-Ended SCSI Interface Specifications

a. The board computer is the host controller.

HP Parallel The parallel port is compatible with Centronics standards, plus some additional features found in HP Series 700 workstations. It supports a bi-directional register model interface. An 8-bit parallel, synchronous interface is used.

A high-density micro D-sub connector is used for the HP Parallel interface. An HP A4300A adaptor cable is required to convert to standard PC compatible 25-pin female D-sub.

Table 1-15 summarizes the specifications for the HP parallel interface.

Table 1-15HP Parallel Interface Specifications

Connector type	Female 25-pin micro D-sub
Data rate	>300 Kilobytes/second with DMA
	200 Kilobytes/second sustained
Device limit	1
Туре	Centronics® and BUSY handshakes

PS/2 Ports 1 and 0 There are two PS/2 style serial ports: one PS/2 keyboard port and one PS/2 mouse port.

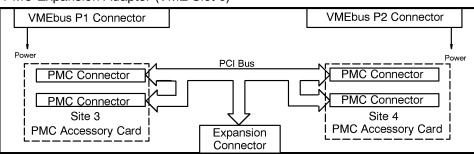
RS-232 There are two serial interfaces. The I/O controller ASIC controls port A, and the backplane controller ASIC controls port B. Each supports CTS/RTS hardware handshaking. An HP A4301A adaptor cable is required to convert it to a standard PC compatible, 9-pin male D-sub. The maximum baud rate listed in Table 1-16 is the hardware limit. Actual transfer rates depend upon the operating system and application load.

Table 1-16 summarizes the specifications for RS-232-C.

NOTE: The RS-323 port B is not active until the OS is up and running.

Table 1-16RS-232-C Interface Specifications

Baud rate	50 to 460.8 Kb/second
Connector type	9-pin female micro D-sub
Controller	16550 UART compatible megacell
Parity	Odd, even, none, one, zero
Stop bits	1, 1.5, 2
Туре	EIA RS-232-C, CCITT V.24/V.28
Word size	5 to 8 bits


Battery-Backed Real-Time Clock The battery-backed clock is implemented in the I/O controller ASIC. Once power is applied to the system board, the battery-backed clock time is read by the operating system only during system initialization. Once the operating system is booted, real time is kept by using the timer built into the CPU. The battery-backed real-time clock is updated by the operating system only when the user ("root" or "super-user") explicitly requests it though the **date** command. The clock has a resolution of 1 second. The accuracy of the clock is within ± 5 seconds every 24 hours when the operating temperature is from 0 to 55° C.

I/O Expansion

The Model 744 board computers are capable of accepting expansion adapters allowing greater functionality through expansion I/O cards. The PMC bridge adapter occupies an additional slot directly above the board computer, and has two sites for industry standard +5V signalling PMC cards. The PMC expansion adapter occupies another slot above the PMC bridge adapter, and provides two additional sites for PMC cards.

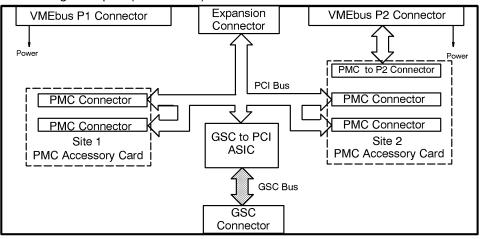

I/O Expansion Block Diagrams

Figure 1-5 illustrates the functional architecture of the optional PMC adapters.

PMC Expansion Adapter (VME Slot 3)

PMC Bridge Adapter (VME Slot 2)

Figure 1-5 PMC Adapters Block Diagrams

Original Equipment Manufacturer (OEM) Support Overview

The sections that follow describe standard OEM support and additional OEM support.

Standard Support

OEMs may obtain the following standard hardware and software support through their local Hewlett-Packard Sales and Service Office:

- Customer support programs for servicing Hewlett-Packard products
- System/product hardware/software configurations
- System support options, including the following:
 - HP SupportLine electronic support
 - License to use software updates
 - Media and document updates
 - On-site response

Additional OEM Support Programs

Contact your Hewlett-Packard OEM Sales Representative regarding the availability of the following OEM support:

- Detailed product qualification programs information
- Drawings: electrical and mechanical
- Engineering consulting time
- Hewlett-Packard specifications for products
- Peripheral device specifications
- Product component lists and specifications

References

This chapter lists the titles and part numbers for hardware and software manuals associated with the Model 745.

HP Hardware Manuals

This section contains tables listing the hardware installation guides, service manuals, and diagnostic manuals for the Model 745 and Model 744.

Installation Guides

Table 2-1 lists the hardware installation guides available for the Model 744 and Model 745.

Table 2-1System Installation/Owner's Manuals

Manual Title	Part Number
HP Model 744 Board Computer Owner's Guide	A4511-90606
HP Model 745 Owner's Guide	A4964-90605

Service Manuals

Table 2-2 lists the hardware service manuals available for the Model 744 and Model 745.

Table 2-2 Related Service Manuals

Manual Title	Part Number
HP Model 744	A4511-90603
HP Model 745	A4964-90602

Diagnostic Manuals

Table 2-3 lists the hardware diagnostic manuals available for the Model 744 and Model 745.

Table 2-3Diagnostic Manuals

Manual Title	Part Number
PA-RISC Support Tools Manual Licensed Users Volume 1, SPU	5960-3149
PA-RISC Support Tools Manual Licensed Users Volume 2, Device Adapters/MUXes	5960-3151
PA-RISC Support Tools Manual Licensed Users Volume 3, LAN	5960-3153
PA-RISC Support Tools Manual Licensed Users Volume 4, SCSI	5960-3155
PA-RISC Support Tools Manual Licensed Users Volume 5, Disks	5960-3157
PA-RISC Support Tools Manual Licensed Users Volume 6, Tapes/ Printers	5960-3159
PA-RISC Support Tools Manual Licensed Users Volume 7, Utilities	5960-3161
PA-RISC Support Tools Manual Licensed Users Volume 8, ISL Support Tools	5960-3163
PA-RISC Support Tools Manual for HP Employees	5960-3165
Support Tools Manager User's Manual; HP 9000 Series 700 and 800	5961-1612
HP Apollo 9000 Series 700 Diagnostics Manual, Volume 1	09740-90041
HP Apollo 9000 Series 700 Diagnostics Manual, Volume 2	09740-90043
HP Apollo 9000 Series 700 Support Tape/CD-ROM User's Manual	B2380-90000

References

Quality

The Quality Chapter discusses safety compliance programs, electromagnetic compatibility programs, climatic and dynamic environmental tests, acoustics levels, statistical reliability, and manufacturing quality programs.

Safety Compliance Programs

The sections that follow describe the Underwriter's Laboratories, Canadian Standards Association, and TUV Rheinland programs.

Introduction

The Model 745/132L is designed, manufactured, and marketed in compliance with the published safety standards stated below. Validation testing was done with one unit representative of the product shipped to the customer. Continued compliance is measured by periodic regulatory audits; production units are tested for each audit. The Model 745/132L is in compliance with adopted safety standards issued by the following standards bodies:

- Underwriter's Laboratories (USA)
- Canadian Standards Association (Canada)
- TUV Product Services(Germany)

The sections that follow explain each standard.

Underwriter's Laboratories (USA) / Canadian Standards Association (Canada)

- UL Standard 1950 Information Technology Equipment 3 Edition
- CSA Standard 22.2 No. 950 3 Edition

As evidence of UL's listing and CSA conformance, the products are marked with the CUL listing mark.

TUV Product Services(Germany)

• Safety Standards - EN60950 Safety of Information Technology Equipment including Electronic Business Equipment; International Electrotechnical Commission, Publication 950.

As evidence of TUV's certification, the products are marked with the TUV GS mark.

Electromagnetic Compatibility Programs

The Model 745/132L complies with published standards for Electromagnetic Compatibility (EMC). In general, testing to required standards was performed using statistically significant quantities of typical Model 745/132L configurations representative of the product shipped to customers. These tests' statistical basis demonstrates that with 80% confidence, at least 80% of the production population meets the specified margins to each standard. Additional configurations are also tested to reduce the probability that non-conforming configurations exist. Continued compliance is measured by periodic regulatory audits; production units are tested for each audit. The Model 745/132L is in compliance with adopted EMC standards issued by the following standards bodies:

- Federal Communications Commission (USA)
- European Community
- Voluntary Control Council for Interference (Japan)
- Canadian Department of Communication
- Taiwan BCIQ
- Australia C-Tick

Federal Communications Commission (USA)

• Self-Certified to 47 CFR (Code of Federal Regulations), part 15, Class A

As evidence of compliance, products are marked with the FCC A statement.

European Community

• Compliant to the EMC Directive 89/33/EEC and 92/31/EEC for Information Technology Equipment (ITE)

As evidence of compliance, products are marked with the CE mark, and the product manuals include a Declaration of Conformity.

Voluntary Control Council for Interference (Japan)

• Registered to VCCI as a Class A product, according to CISPR 22

As evidence of compliance, products are marked with the VCCI statement.

Canadian Department of Communication

• Self Certified as a Class A product

As evidence of compliance, products are marked with the Industry Canada Class A statement.

Taiwan BQIC

• Registered as a Class A product

As evidence of compliance, products are marked with the BQIC indentification number.

Australian C-Tick

• Registered as a Class A product

As evidence of compliance, products are marked with the Australia C-Tick mark.

Electromagnetic Compatibility Test Suites

Table 3-1Radiated Emissions Tests During Operation

Standard	Level
AS/NZS 3548	CISPR 22 class A
CSM 13438	CISPR 22 class A
EN55022	CISPR 22 class A
EN55011	CISPR 11class A
FCC CFR 47 parts 2 and 15	FCC Class A
VCCI class A	CISPR 22 class A

Table 3-2 Conducted Emissions Tests During Operation

Standard	Level
EN55022	CISPR 22 class A
EN55011	CISPR 11 class A
FCC CFR 47 parts 2 and 15	FCC Class A
VCCI class A	CISPR 22 class A

Table 3-3Power Line Harmonics Tests During Operation

Standard	Level
EN61000-3-2	Class A

Table 3-4Power Line Flicker Test During Operation

Standard	
EN61000-3-3	

Table 3-5 Magnetic Emissions Tests While Non-Operating

Standard	Level
HP Standard 765.006 complies with CFR49	<2 milligauss at 2.1 m
IATA Dangerous Goods Regulations, 30ed	

Quality Electromagnetic Compatibility Test Suites

Table 3-6Magnetic Emissions Tests During Operation

Standard	Level
HP Standard 765.007	< 5 gauss p-p

Table 3-7 Electro-Static Discharge Field Immunity

Standard	Level
HP Standard 765.002	15 KV A.D. (operating)
IEC 801-2 level 2	4 KV C.D., 8 KV A.D.

Table 3-8Radiated Field Immunity

Standard	Level
IEC 801-3	3 V/m
IEC 1000-4-3	10 V/m

Table 3-9Electrical Fast Transients

Standard	Level
IEC 801-4	2 KV mains, 1 KV I/O ports
IEC 801-4	1 KV mains, 0.5 KV I/O ports

Table 3-10Surge Transients

Standard	Level
HP Standard 765.003	1 KV DM/CM high energy transient
HP Standard 765.003	1 KV DM/CM low energy transient
IEC 801-5 level 3	1 KV DM, 2KV CM

Table 3-11Conducted Immunity

Standard	Level	Frequency Range
HP Standard 765.005	3 V rms	30 Hz to 50 KHz
HP Standard 765.005	1 V rms	50 KHz to 400 MHz

Table 3-12Line Dips and Interrupts

Standard	Level
HP Standard 765.003	500 ms, 33% sag
EN61000-4-11	10 ms, 30% dip
EN61000-4-11	100 ms, 60% dip
EN61000-4-11	5 s, 95% dip

Table 3-13Line Surge

Standard	Level
HP Standard 765.003	500 ms, 12% surge

Table 3-14Line Blackout/Dropout

Standard	Level
HP Standard 765.003	20 ms

Table 3-15Line Brownout

Standard	Level
HP Standard 765.003	100 Vac to 0 Vac in 30 minutes.

Table 3-16Line Brownout/Recovery

Standard	Level
HP Standard 765.003	0 Vac to 100 Vac in 30 minutes.

Climatic and Dynamic Environmental Ruggedness

The Model 745/132L is designed for use in an environment that involves moderately high and low temperatures, humidity variations, and occasional vibration. Many of the test limits the workstations are subjected to during development are more severe than those documented.

The tests were developed to cause product failure so that product weaknesses are identified, understood, and eliminated, when possible and to provide greater assurance of long-term compliance to product specifications.

An effective qualification program establishes appropriate assurances. Our development and manufacturing process capabilities are well understood.

Significant quantities of Model 745/132L were tested prior to release for volume production. Representative samples of customer-shippable workstations were tested in various configurations through the environmental tests to evaluate corner-case conditions.

NOTE: Presentation of these test suites does not imply a guarantee of product performance, nor a guarantee of performance to these levels by the entire population of Model 745/132L computer systems.

Table 3-17 Temperature Tests While Non-Operational

Standard	Level
HP Standard 757 IEC 721-3-1	-30° C to 70° C

Table 3-18 Temperature Tests During Operation - without Mass Storage

Standard	Level
HP Standard 757 IEC 721-3-3	0° C to 55° C
Temperature slew rate	10° C/minute

Table 3-19 Temperature Tests During Operation - with Mass Storage

Standard	Level
HP Standard 757 IEC 721-3-3	5° C to 40° C
Temperature slew rate	10° C/minute

Table 3-20 Humidity Tests While Non-Operational

Standard	Level
HP Standard 758 IEC 721-2-1	90% relative humidity at 65° C

Table 3-21 Humidity Tests During Operation - without Mass Storage

Standard	Level
HP Standard 758 IEC 721-2-1	95% relative humidity at 40° C

Table 3-22 Humidity Tests During Operation - with Mass Storage

Standard	Level
HP Standard 758 IEC 721-2-1	90% relative humidity at 40° C

Table 3-23 Altitude Tests While Operating without Mass Storage

Standard	Level
HP Standard 761 IEC 721-3-3, Method 68-2-13	4.6 Km

Table 3-24 Altitude Tests While Operating with Mass Storage

Standard	Level
HP Standard 761 IEC 721-3-3, Method 68-2-13	3.05 Km

Table 3-25 Altitude Tests While Non-Operational

Standard	Level
HP Standard 761 IEC 721-3-3, Method 68-2-13	4.6 Km

Quality Climatic and Dynamic Environmental Ruggedness

Table 3-26	Vibration Tests	While Non-Operating -	without Mass Storage
-------------------	-----------------	-----------------------	----------------------

Standard	Level
HP Standard 759	4.9 m/s ² (0.75 g 0-p) swept sine (5-500-5 Hz)
HP Standard 759	Survival (random vibration) ~2.41 Grms $0.02 \text{ g}^2/\text{Hz}$ from 5-100 Hz, rolloff @ 6dB/Octave from 100-137 Hz, $0.0107 \text{ g}^2/\text{Hz}$ from 137-350 rolloff @ 6dB/Octave from 350-500Hz, $0.0052 \text{ g}^2/\text{Hz}$ @ 500 Hz
Packaging tests HP Standard 762	4.9 m/s ² (0.5 g 0-p) swept sine (5-500-5 Hz)
Packaging tests HP Standard 762	0.015 g ² /Hz (.3 g rms) random 1.47 G rms (5-200 Hz)

Table 3-27Package Test

Standard	Level
HP Standard 762 Packaging drop test	.76 meters

Table 3-28 Shock Tests During Operation

Standard	Level
HP Standard 760	20 Gpk \leq 3ms half sine

Table 3-29 Shock Tests While Non-Operational

Standard	Level
HP Stnadard 760	80 Gpk \leq 3ms half sine

Table 3-30Vibration Tests During Operation - with Mass Storage

Standard	Level
HP Standard 759	(random vibration) ~0.21 Grms 0.0001 g ² /Hz from 5-350 Hz, rolloff @ 6dB/Octave from 350-500Hz, 0.00005 g ² /Hz @ 500 Hz

Table 3-31Sound Power Levels

Sound power levels are A-weighted for these tests.

Standard	Level	Equipment Under Test Conditions, Procedures, and Measurements (Acceptance Criteria)
HP Environmental tests, Section 767 ISO 7779	6 Bels	Fans operating

Statistical Reliability

The sections that follow explain the Annualized Failure Rate (AFR) and the Mean Time Between Failure (MTBF) computations.

Annualized Failure Rate Projections

Estimated AFR is based on a parts count and the failure rates of those parts in similar products. The AFR is estimated from the sum of the failure rates of the components' assemblies. A key assumption is that AFR is constant beyond the early life of the product and before long-term wear out.

Projected Failure Rate is the mature AFR, estimated from the failure rates of the components of the product. The "Estimated Long-Term Annualized Failure Rate" is a future projection of an average realistic failure rate beyond the typical infant failure period that occurs in the first few months of use and before long-term wear out, which occurs after many years of use.

Mean Time Between Failure Computations

The MTBF is the reciprocal of the AFR. MTBF uses the following two units of time:

- Annualized MTBF (A-MTBF), the time units are years, or annually.
- Hourly MTBF (H-MTBF), the time unit is the hour.

This is derived by factoring out the AFR's annualized percentage, then finding its reciprocal. A resultant A-MTBF term is in years.

Table 3-32MTBF Example

Example	AFR
Model 744 board computer with graphics	4.8%/year
Add one 32MB RAM card	0.72%/year
Total	5.5%/year

 $\frac{1}{0.055 \,/\, 8766 \,hours} = 159,381 \,hours$

Table 3-33Model 745/132L Ruggedized Workstation with
Model 744 CPU AFR Projections (%/Year)

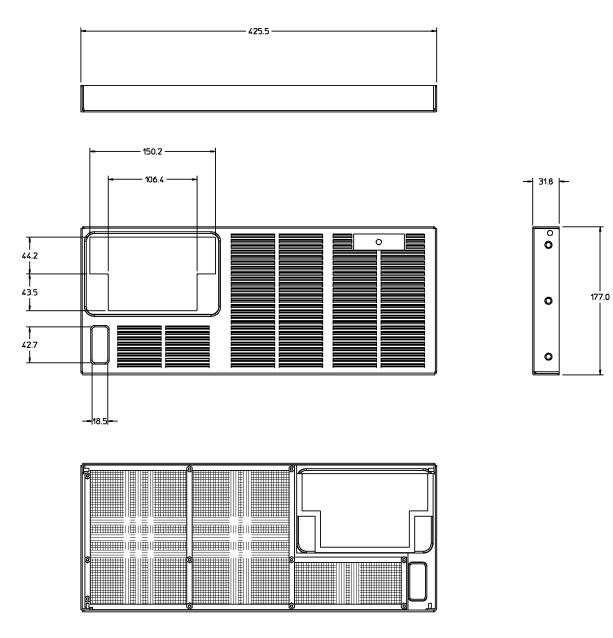
Hardware Configurations	Projected AFR (%/Yr.)
744 Board Computer, 32 MB RAM, EISA Tray, 2.0-GB FWD SCSI Disk, 17-inch Monitor	11.8
Option 64 MB RAM card (one card using 16 Mbit DRAM)	1.23
Power Supply	4.3
EISA Backplane	1
PCI Backplane	1
System Backplane	1
Miscellaneous hardware (cables, switches, etc.)	2

Table 3-34Model 744 Board Computer AFR Projections (%/Year)

I

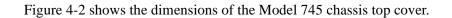
	Projected AFR (%/Yr.)	
744 Board	Computer with on-board graphics option	4.8
Memory	32 MB RAM card (one card using 16Mbit DRAM)	0.7
	64 MB RAM card (one card using 16Mbit DRAM)	1.23
	128 MB RAM card (one card using 64Mbit DRAM)	2.1
	256 MB RAM card (one card using 128Mbit DRAM)	TBD
Option	PMC Bridge	2.0

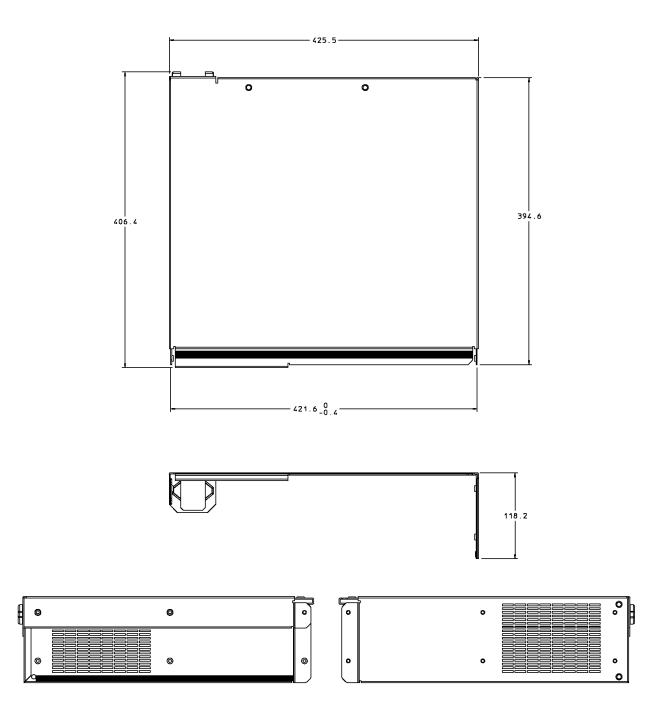
Quality
Statistical Reliability

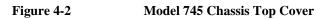

4

Mechanical Information

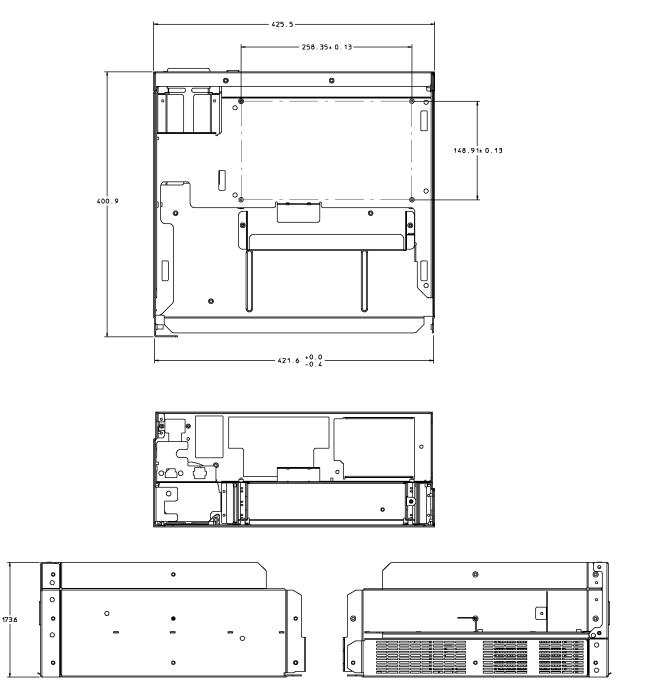
This chapter contains mechanical information about the components of the Model 745 Industrial System and the Model 744 Board Computers. Included is interface connector manufacturing data, system board and accessory card dimensions, chassis and module dimensions and weights, mounting and support, and mechanical drawings.


Model 745 Chassis and Modules


Figure 4-1 shows the dimensions of the Model 745 front bezel.



Model 745 Front Bezel



Mechanical Information Model 745 Chassis and Modules

Figure 4-3 shows the dimensions of the Model 745 chassis base module.

Model 745 Chassis Base Module

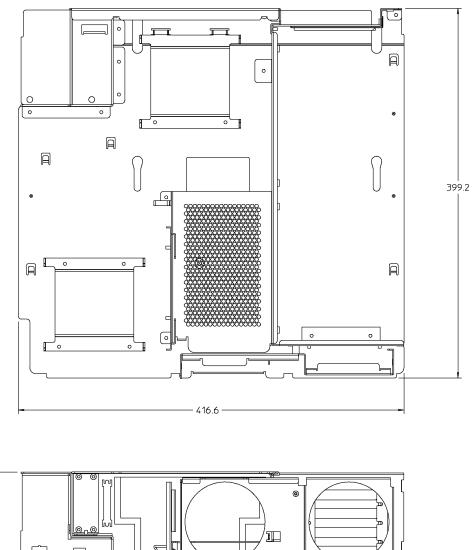
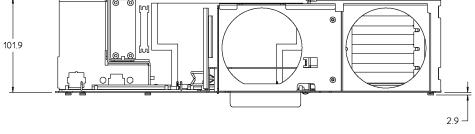
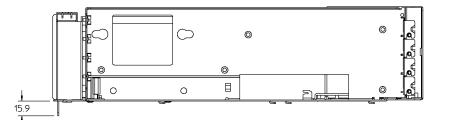
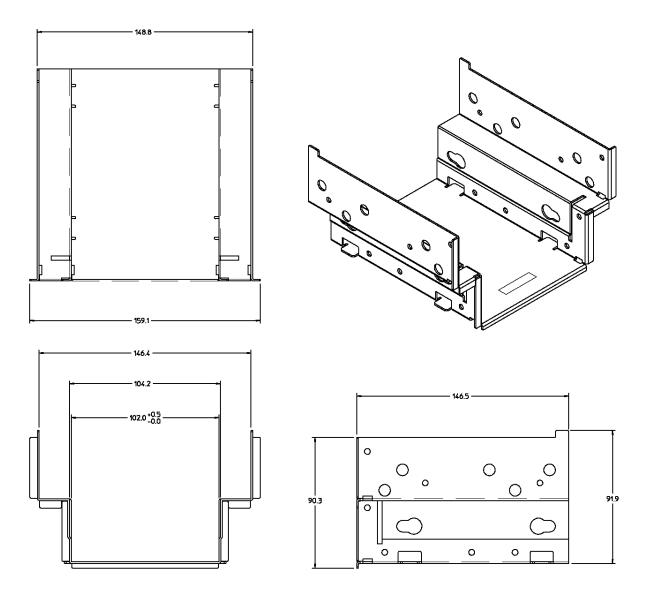




Figure 4-4 shows the dimensions of the Model 745 chassis mid-tray module.



Model 745 Chassis Mid-tray Module

Mechanical Information Model 745 Chassis and Modules

Figure 4-5 shows the dimensions of the Model 745 disk carrier module.

Model 745 Disk Carrier Module

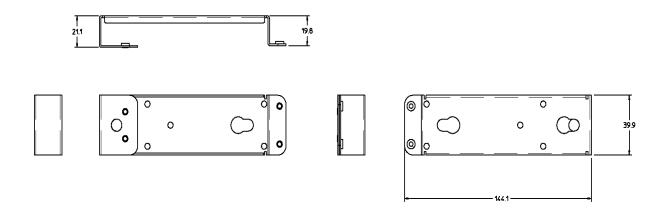
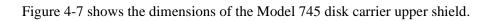
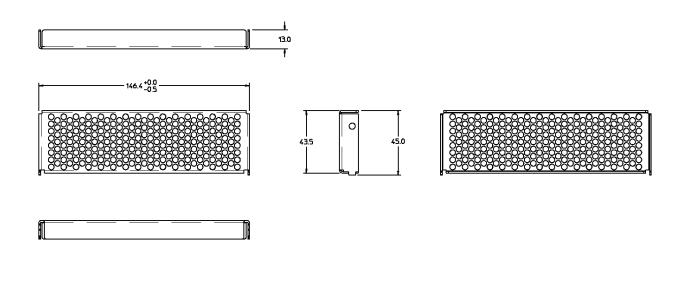
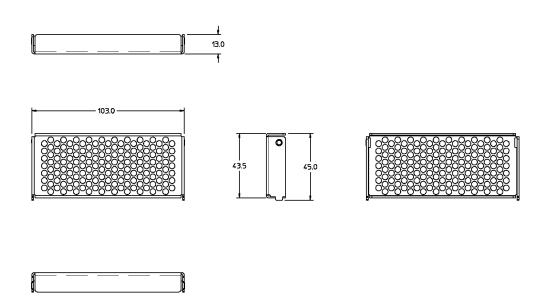




Figure 4-6 shows the dimensions of the Model 745 disk adapter bracket.

Model 745 Disk Adapter Bracket



Model 745 Disk Carrier Upper Shield

Mechanical Information Model 745 Chassis and Modules

Figure 4-8 shows the dimensions of the Model 745 disk carrier lower shield.

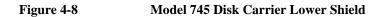
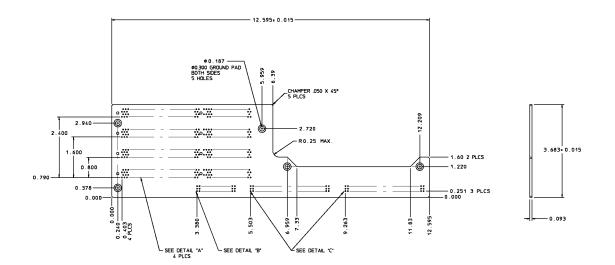



Figure 4-9 shows the dimensions of the Model 745 EISA backplane board.

Model 745 EISA Backplane Board

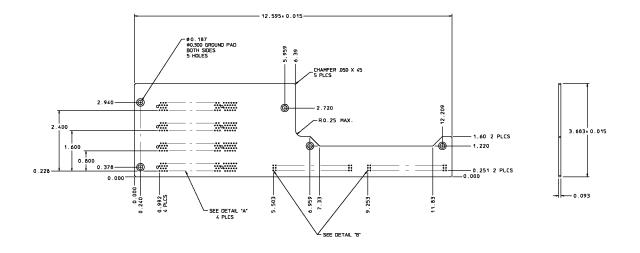
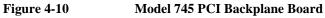
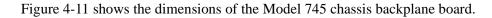



Figure 4-10 shows the dimensions of the Model 745 PCI backplane.



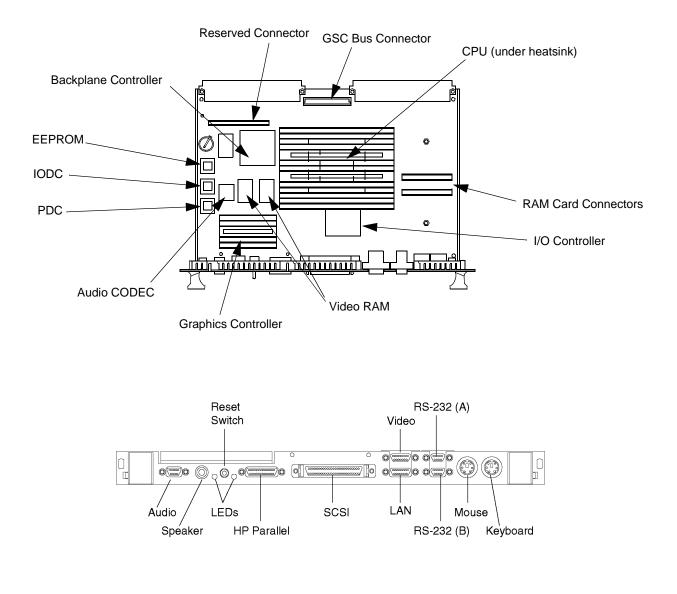


Figure 4-11 Model 745 Chassis Backplane Board

Model 744 Board Computer

Key Component

Figure 4-12 shows key components on the Model 744 Board Computer.

Interface Connectors

Table 4-1 lists the interface connector manufacturing data.

Connector	Manufacturing Data	Manufacturing Part Number
Audio	ITT Canon	MDSM-9PE-Z10 or equivalent
HP Parallel	ITT Canon	MDSM-25PE-Z10 or equivalent
Mouse/Keyboard	AMP	750071-1 or equivalent
P1	AMP	215606-4 or equivalent
P2	AMP	650988-0 or equivalent
SCSI II	AMP	749830-5 or equivalent
Serial	ITT Canon	MDSM-18PE-Z22 or equivalent
Speaker	Hosiden	HSJ3062-01-410 or equivalent
Video/LAN	ITT Canon	MDSM-30PE-z10 or equivalent

Table 4-1 Interface Connector Manufacturing Data

Mechanical Information Model 744 Board Computer

Mechanical Dimensions

Figure 4-13 through Figure 4-17 show the dimensions of the Model 744 system board.

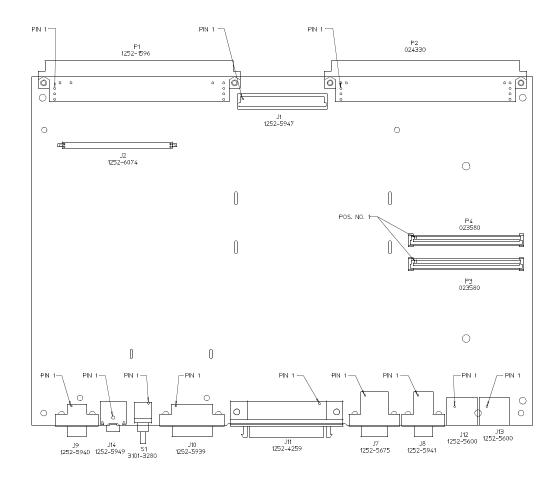


Figure 4-13 Model 744 Board Computer

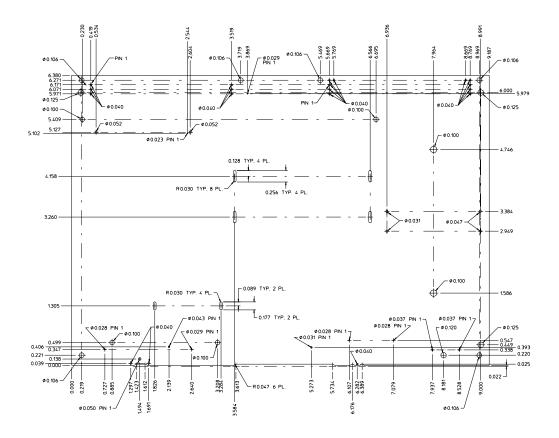


Figure 4-14

Model 744 Board Computer (Continued)

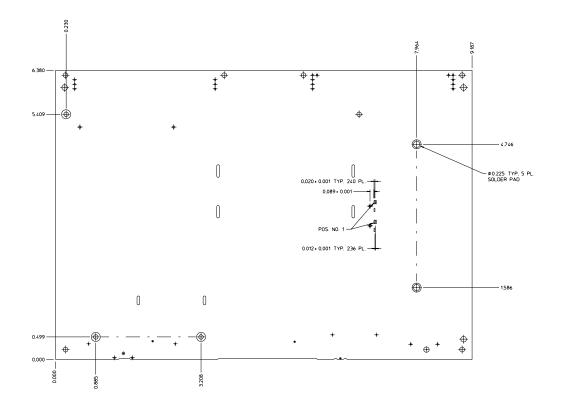
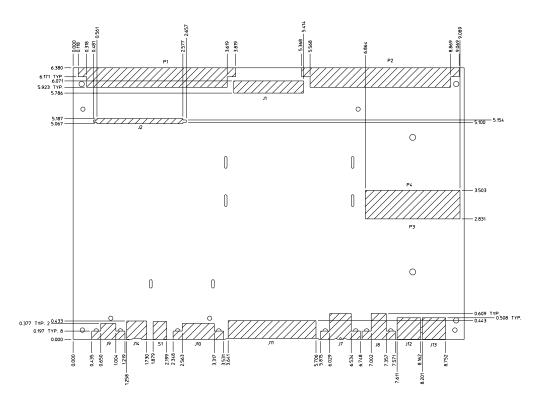



Figure 4-15Model 744 Board Computer (Continued)

Model 744 Board Computer (Continued)

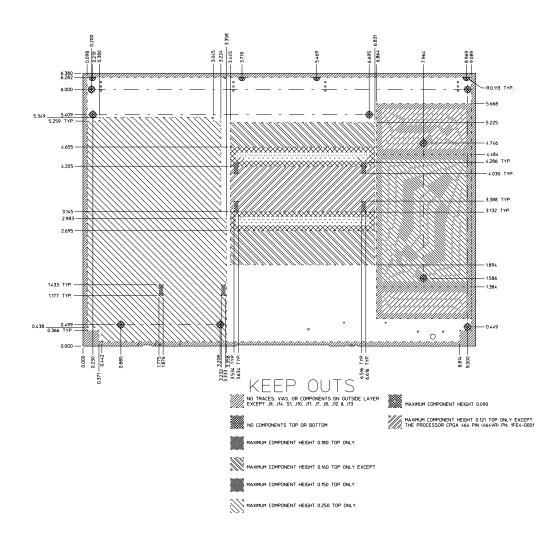
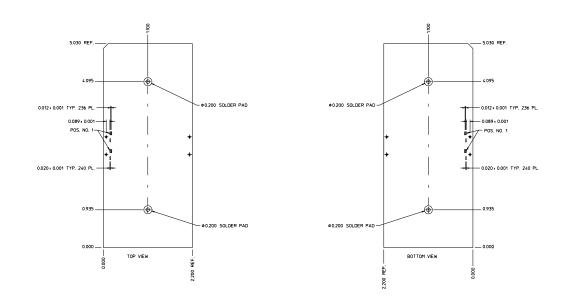



Figure 4-17Model 744 Board Computer (Continued)

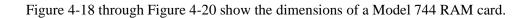


Figure 4-18

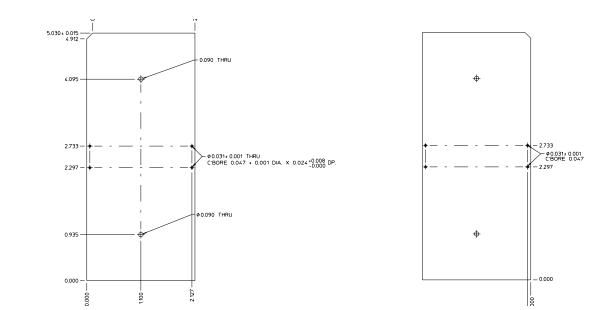


Figure 4-19

Model 744 RAM Card (Continued)

Mechanical Information Model 744 Board Computer

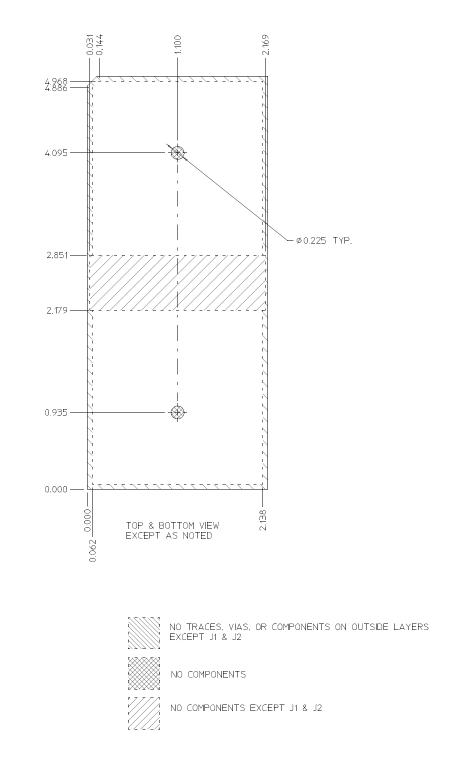


Figure 4-20 Model 744 RAM Card (Continued)

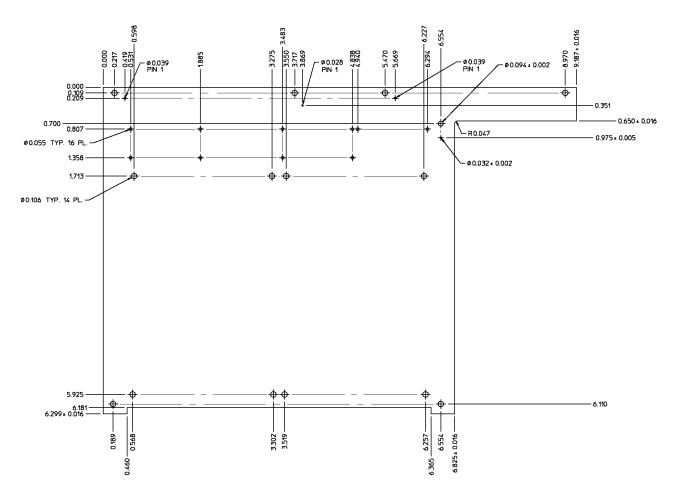
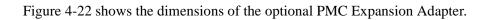



Figure 4-21 shows the dimensions of the optional PMC Bridge Adapter.

Figure 4-21

PMC Bridge Adapter

Mechanical Information Model 744 Board Computer

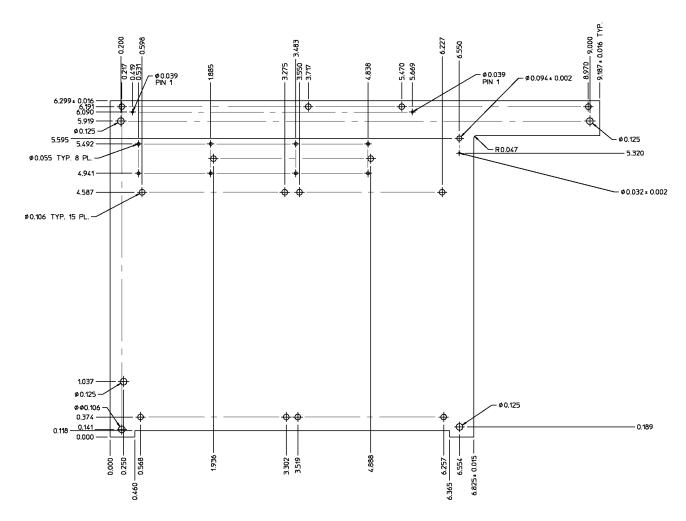


Figure 4-22 PMC Expansion Adapter

Weights

Table 4-2 lists the weights of the components of the Model 745 system.

Table 4-2	Weights of Model 745 Product and Modules

Part Name	Metric Weight	English Weight
Model 745 Industrial System base chassis (does not include backplanes, board computer, power supply, fans, cables, or switches)	4.9 Kg	10.8 lbs.
Mid-tray module (without disk carriers, fans, cables)	2.9 Kg	6.55 lbs.
Disk Carrier (2 per system)	0.83 Kg	1.85 lbs.
Fan (3 per system)	0.1 Kg	0.25 lb.
Top Cover	2.7 Kg	6.0 lbs.
Front Bezel	0.79 Kg	1.75 lbs.
Chassis Backplane	0.3 Kg	0.65 lb.
EISA converter board/backplane	0.4 Kg	0.85 lb.
PCI converter board/backplane	0.34 Kg	0.75 lb.
Power supply	2.65 Kg	5.9 lbs.
Disk drives (maximum weight)	0.95 Kg	2.1 lbs.
Slot cover	0.05 Kg	0.1 lb.
Model 744 Board Computer with on-board graphics (no other options)	0.62 Kg	1.1 lb.
Model 744 RAM card	0.05 Kg	0.1 lb.
PMC bridge board with mounting hardware (no blank bezels)	0.27 Kg	0.5 lb.
PMC expansion board with mounting hardware (no blank bezels or sleeves)	0.24 Kg	0.4 lb.
PMC blank bezels (each)	0.03 Kg	0.05 lb.
PMC ejector handle sleeves	0.02 Kg	0.04 lb.
PMC graphics card	0.09 Kg	0.2 lb.

Mechanical Information Weights

Mounting and Support

Each Model 745 workstation is shipped with a rack mount kit including flanges, spacers, and screws. In this section, the term "back" refers to the cable-out side of the workstation. Model 745 may be rack mounted either front out or back out.

Power switching is accessible from both front and back. A power LED is located with each power switch. Status and test LEDs are located on the Model 744 Board Computer. If the board computer LEDs must be visible, mount the system back out. Devices within the mass storage module can be arranged for front or back accessibility.

Mechanical Drawings

For OEMs that have signed a Hewlett-Packard non-disclosure agreement, the mechanical drawings are available by request through your Hewlett-Packard OEM Sales Representative. These drawings are Hewlett-Packard confidential and cannot be redistributed.

When you ask for drawings, please specify the following:

- Drawing part number, size, and page number, if needed
- Name, assembly or subassembly

The drawings are sent to your Sales and Service Office.

Conversion Cables

All conversion cables are 762 plus or minus 30 mm (30 plus or minus 1.18 inch) long. The end of the cable that connects to the board computer uses a micro D-sub male (MDSM) connector. The other end of the cable uses a standard D-sub or other connector.

Chassis Parts and Models

Table 4-3 shows the assembly group, included subassemblies, and mechanical drawing reference number for the Model 745 chassis parts and modules.

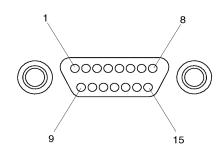
Assembly Group	Included Subassemblies	Subassembly Drawing Number
Model 745 chassis	Front bezel	D-A4964-00005-10
	Base chassis	D-A4964-00004-10
	Top cover	D-A4964-00003-10
	Mid-tray module	D-A4964-00006-10
	Chassis backplane	D-A4964-66006-10
	PCI backplane	D-A4964-66003-10
	EISA backplane	D-A4964-66004-10
Power supply module		D-0950-2690-10
Model 744 system board	Front panel	D-A2636-00001-10
	Blank bulkhead	D-A2636-00004-10
PMC expansion	PMC bridge adapter	D-A4504-66001-10
	PMC expansion adapter	D-A4505-66002-10

Table 4-3Mechanical Drawings for Chassis Parts and Modules

Mechanical Information Weights

Electrical Information

The Electrical Information Chapter contains information on the connector pinouts, real-time clock battery, and video output signal specifications.


Electrical Information

The sections that follow contain figures and tables of the connector pinouts and the wiring tables for video, audio, HP parallel, RS-232, AUI LAN, single-ended SCSI, PS/2, and PMC; specifications for the real-time battery clock, video output signals, and video timing.

Video Connector Pinouts

This section contains a figure of the video connector, a table of the video connector pinouts, the HP4304A conversion video cable connectors diagrams, and the conversion video cable wiring table.

Figure 5-1 illustrates the video connector pin locations for the Model 744 I/O panel.

Figure 5-1 Video Connector

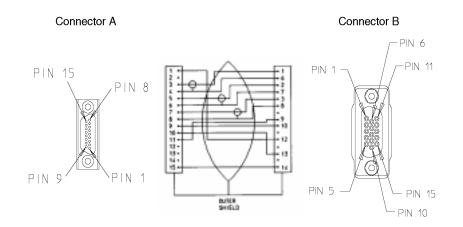

Table 5-1 identifies the pins on the Model 744 I/O panel video connector.

Table 5-1Video Connector Pinouts

Pin Number	Signal	Pin Number	Signal	Pin Number	Signal
1	DDC	6	GND	11	+5
2	GND	7	BLUE	12	GND
3	RED	8	GND	13	SSYNC
4	GND	9	GND	14	GND
5	GREEN	10	HSYNC	15	VSYNC

Electrical Information

Figure 5-2 illustrates the connector pin locations on each end of the HP A4223A conversion video cable.

Figure 5-2 HP A4223A Conversion Video Cable Connectors

Table 5-2 identifies HP A4223A conversion video cable pins.

Table 5-2A4223A Conversion Video Cable Wiring Table

15-Pin MDSM	15-Pin D-Sub
Pin 1	Pin 12
Pin 2	
Pin 3	Pin 1
Pin 4	Pin 6
Pin 5	Pin 2
Pin 6	Pin 7
Pin 7	Pin 3
Pin 8	Pin 8
Pin 9	Pin 10
Pin 10	Pin13
Pin 11	Pin 9
Pin 12	
Pin 13	
Pin 14	
Pin 15	Pin 14

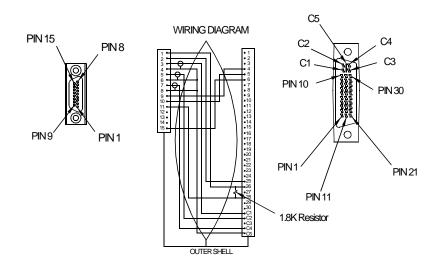


Figure 5-3 illustrates the connector pin locations on each end of the HP A4305A conversion video cable.

Figure 5-3 HP A4305A Conversion Video Cable Connectors

Table 5-3 identifies HP A4305A conversion video cable pins.

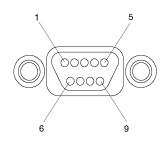
15-Pin MDSM	35-Pin EVC
Pin 1	Pin 26
Pin 2	Pin 25
Pin 3	Pin C1
Pin 4	Pin C5
Pin 5	Pin C2
Pin 6	Pin C5
Pin 7	Pin C4
Pin 8	Pin C5
Pin 9	Pin 4
Pin 10	Pin 5
Pin 11	Pin 28
Pin 12	
Pin 13	
Pin 14	
Pin 15	Pin 6

Table 5-3 A4305A Conversion Video Cable Wiring Table

Audio Connector Pinouts

This section contains a figure of the audio connector and a table of the audio connector pinouts.

Figure 5-4 illustrates the audio connector pin locations.



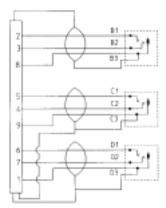
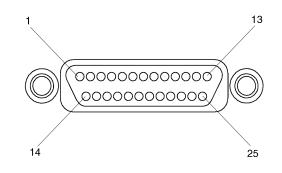

Figure 5-4 Audio Connector

Table 5-4 identifies the audio connector pins.

Table 5-4	Audio	Connector	Pinouts

Pin Number	Signal	
1	Mic in GND	
2	Line in left	
3	Line in right	
4	Headset right	
5	Headset left	
6	Mic in A	
7	Mic Vref	
8	Line in GND	
9	Headset GND	

Figure 5-5 illustrates the connector pin locations on each end of the HP A4302A conversion audio cable.



HP Parallel Connector Pinouts

This section contains a figure of the HP parallel connector, a table of the HP parallel connector pinouts, the HP4300A conversion HP parallel cable connectors diagrams, and the conversion HP parallel cable wiring table.

Figure 5-6 illustrates the HP parallel connector pin locations.

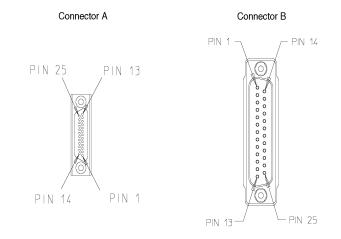

Figure 5-6HP Parallel Connector

Table 5-5 identifies the HP parallel connector pins.

Table 5-5HP Parallel Connector Pinouts

Pin Number	Signal	Pin Number	Signal
1	STROBE	14	AFD
2	Data 0	15	ERROR
3	Data	16	INIT
4	Data	17	SCT IN
5	Data	18	GND
6	Data	19	GND
7	Data	20	GND
8	Data	21	GND
9	Data	22	GND
10	АСК	23	GND
11	BUSY	24	GND
12	PE	25	GND
13	SLCT		

Figure 5-7 illustrates the connector pin locations on each end of the HP A4300A conversion HP parallel cable

Figure 5-7 HP A4300A Conversion HP Parallel Cable Connectors

Table 5-6 identifies the HP A4300A conversion HP parallel cable pins.

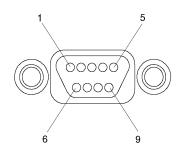

5				
25-Pin MDSM	25-Pin D-Sub	25-Pin MDSM	25-Pin D-Sub	
Pin 1	Pin 1	Pin 14	Pin 14	
Pin 2	Pin 2	Pin 15	Pin 15	
Pin 3	Pin 3	Pin 16	Pin 16	
Pin 4	Pin 4	Pin 17	Pin 17	
Pin 5	Pin 5	Pin 18	Pin 18	
Pin 6	Pin 6	Pin 19	Pin 19	
Pin 7	Pin 7	Pin 20	Pin 20	
Pin 8	Pin 8	Pin 21	Pin 21	
Pin 9	Pin 9	Pin 22	Pin 22	
Pin 10	Pin 10	Pin 23	Pin 23	
Pin 11	Pin 11	Pin 24	Pin 24	
Pin 12	Pin 12	Pin 25	Pin 25	
Pin 13	Pin 13			

Table 5-6Conversion HP Parallel Cable Wiring Table

RS-232 Connector Pinouts

This section contains a figure of the RS-232 connector, a table of the RS-232 connector pinouts, the HP 4301A conversion RS-232 cable connectors diagrams, and the conversion RS-232 cable wiring table.

Figure 5-8 illustrates the RS-232 connector pin locations.

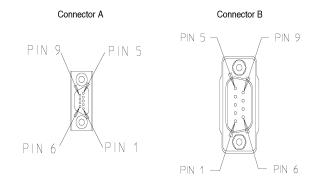

Figure 5-8 RS-232 Serial Connector

Table 5-7 identifies the RS-232 connector pins.

Table 5-7	RS-232-C Connector Pinouts
Lusie e /	

Pin Number	Signal	Pin Number	Signal
1	DCD	6	DSR
2	RXD	7	RTS
3	TXD	8	CTS
4	DTR	9	RI
5	GND		

Figure 5-9 illustrates the connector pin locations on each end of the HP A4301A conversion RS-232 cable.

Figure 5-9 HP A4301A Conversion RS-232 Cable Connectors

Table 5-8 is the wiring table for the HP A4301A conversion RS-232 cable.

Table 5-8Conversion RS-232 Cable Wiring Table

9-Pin MDSM	9-Pin D-Sub
Pin 1	Pin 1
Pin 2	Pin 2
Pin 3	Pin 3
Pin 4	Pin 4
Pin 5	Pin 5
Pin 6	Pin 6
Pin 7	Pin 7
Pin 8	Pin 8
Pin 9	Pin 9

AUI LAN Connector Pinouts

This section contains a figure of the AUI LAN connector, a table of the AUI LAN connector pinouts, the HP 4303A conversion AUI LAN cable connectors diagrams, and the conversion AUI LAN cable wiring table.

Figure 5-10 illustrates the AUI LAN connector pin locations.

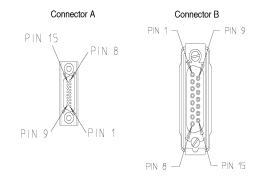



Figure 5-10 AUI LAN Connector

Table 5-9 identifies the AUI LAN connector pins.

Pin Number	Signal	Pin Number	Signal	Pin Number	Signal
1	GND	6	GND	11	DO-S (GND)
2	CI-A	7	CO-A (NC)	12	DI-B
3	DO-A	8	CO-S (NC)	13	+ 12 V
4	DI-S (GND)	9	CI-B	14	GND
5	DI-A	10	DO-B	15	CO-B (NC)

Figure 5-11 illustrates the connector pin locations on each end of the HP A4303A conversion LAN cable.

Figure 5-11 HP A4303A Conversion LAN Cable Connectors

Table 5-10 is the wiring table for the HP A4303A conversion LAN cable.

15-Pin MDSM	15-Pin D-Sub	15-Pin MDSM	15-Pin D-Sub
Pin 1	Pin 1	Pin 9	Pin 9
Pin 2	Pin 2	Pin 10	Pin 10
Pin 3	Pin 3	Pin 11	Pin 11
Pin 4	Pin 4	Pin 12	Pin 12
Pin 5	Pin 5	Pin 13	Pin 13
Pin 6	Pin 6	Pin 14	Pin 14
Pin 7	Pin 7	Pin 15	Pin 15
Pin 8	Pin 8		

Table 5-10Conversion LAN Cable Wiring Table

Single-Ended SCSI Connector Pinouts

The section that follows contains a figure of the single-ended SCSI connector and a table of the single-ended SCSI connector pinouts.

Figure 5-12 illustrates the single-ended SCSI connector pin locations.

Figure 5-12 Single-Ended SCSI Connector

Table 5-11 identifies the single-ended SCSI connector pins.

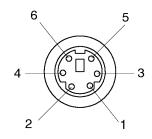

Pin Number	Signal	Pin Number	Signal
1	GND	26	DATA 0
2	GND	27	DATA 1
3	GND	28	DATA 2
4	GND	29	DATA 3
5	GND	30	DATA 4
6	GND	31	DATA 5
7	GND	32	DATA 6
8	GND	33	DATA 7
9	GND	34	Data Parity
10	GND	35	GND
11	GND	36	GND
12	GND	37	GND
13	GND	38	Term_Pwr
14	GND	39	GND
15	GND	40	GND
16	GND	41	ATN
17	GND	42	GND
18	GND	43	BSY
19	GND	44	ACK
20	GND	45	RST
21	GND	46	MSG
22	GND	47	SEL
23	GND	48	CD
24	GND	49	REQ
25	GND	50	Ю

Table 5-11Single-Ended SCSI Connector Pinouts

PS/2 Connector Pinouts

The following section contains a figure of the PS/2 connector and a table of the PS/2 connector pinouts.

Figure 5-13 illustrates the PS/2 connector pin locations.

Figure 5-13 PS/2 Connector

Table 5-12 identifies the PS/2 connector pins.

Table 5-12PS/2 Connector Pinouts

Pin Number	Signal
1	Data
2	Not used
3	GND
4	+5
5	Clock
6	Not used

Backplane Connector Pinouts

This section contains tables for the Model 745/Model 744 P1/J1 pin assignments and signal mnemonics; the Model 745 P2/J2, slots 2-3, pin assignments and signal mnemonics.

Table 5-13 identifies the backplane connector pin assignments and signal mnemonics for the Model 745/744 P1/J1.

Pin Number	Row A	Row B	Row C
1	D00	BBSY	D08
2	D01	BCLR	D09
3	D02	ACFAIL	D10
4	D03	BG0IN	D11
5	D04	BG0OUT	D12
6	D05	BG1IN	D13
7	D06	BG1OUT	D14
8	D07	BG2IN	D15
9	GROUND	BG2OUT	GROUND
10	SYSCLOCK	BG3IN	SYSFAIL
11	GROUND	BG3OUT	BERR
12	DS1	BR0	SYSRESET
13	DS0	BR1	LWORD
14	WRITE	BR2	AM5
15	GND	BR3	A23
16	DTACK	AM0	A22
17	GND	AM1	A21
18	AM2	AM2	A20
19	AM3	AM3	A19
20	GND	GND	A18
21	IACKIN	NC	A17
22	IACKOUT	NC	A16
23	AM4	GND	A15
24	A07	IRQ7	A14
25	A06	IRQ6	A13
26	A05	IRQ5	A12
27	A04	IRQ4	A11
28	A03	IRQ3	A10
29	A02	IRQ2	A09
30	A01	IRQ1	A08
31	-12Vdc	NC	+12Vdc
32	+5Vdc	+5Vdc	+5Vdc

Table 5-14 identifies the connector pin assignments and signal mnemonics for the Model 744 P2 (in slot 1).

Pin Number	Row A	Row B	Row C
1	SYNCHWAXL	+5 V	GSC_AD0
2	SYNCHWAXH	GND	GSC_AD1
3	NC	Reserved	GSC_AD2
4	WAX_RST_L	A24	GSC_AD3
5	NC	A25	GSC_AD4
6	GSC_BR_L(2)	A26	GSC_AD5
7	GSC_BG_L(2)	A27	GSC_AD6
8	NC	A28	GSC_AD7
9	GSC_ADDV_L	A29	GSC_AD8
10	GSC_READY_L	A30	GSC_AD9
11	NC	A31	GSC_AD10
12	GSC_ERROR_L	GND	GSC_AD11
13	GSC_PARITY_L	+5 V	GSC_AD12
14	GSC_XQ_L	D16	GSC_AD13
15	GSC_LS_L	D17	GSC_AD14
16	NC	D18	GSC_AD15
17	GSC_TYPE0	D19	GSC_AD16
18	GSC_TYPE1	D20	GSC_AD17
19	GSC_TYPE2	D21	GSC_AD18
20	GSC_TYPE3	D22	GSC_AD19
21	NC	D23	GSC_AD20
22	SYNCTTL	GND	GSC_AD21
23	SP_DETECT	D24	GSC_AD22
24	ALT_BR_L	D25	GSC_AD23
25	ALT_BG_L	D26	GSC_AD24
26	NC	D27	GSC_AD25
27	NC	D28	GSC_AD26
28	TDO	D29	GSC_AD27
29	TDI	D30	GSC_AD28
30	ТСК	D31	GSC_AD29
31	TMS	GND	GSC_AD30
32	TRST	+5 V	GSC_AD31

Table 5-14Model 744 P2 Pin Assignments and Signal Mnemonics

Table 5-15 identifies the backplane connector pin assignments and signal mnemonics for the Model 745 P2/J2, slots 2 and 3.

Table 5-15

Model 745 P2/J2 Pin Assignments and Signal Mnemonics

Pin Number	Row A	Row B	Row C
1	User defined	+5Vdc	User defined
2	User defined	GND	User defined
3	User defined	Reserved	User defined
4	User defined	A24	User defined
5	User defined	A25	User defined
6	User defined	A26	User defined
7	User defined	A27	User defined
8	User defined	A28	User defined
9	User defined	A29	User defined
10	User defined	A30	User defined
11	User defined	A31	User defined
12	User defined	GND	User defined
13	User defined	+5Vdc	User defined
14	User defined	D16	User defined
15	User defined	D17	User defined
16	User defined	D18	User defined
17	User defined	D19	User defined
18	User defined	D20	User defined
19	User defined	D21	User defined
20	User defined	D22	User defined
21	User defined	D23	User defined
22	User defined	GND	User defined
23	User defined	D24	User defined
24	User defined	D25	User defined
25	User defined	D26	User defined
26	User defined	D27	User defined
27	User defined	D28	User defined
28	User defined	D29	User defined
29	User defined	D30	User defined
30	User defined	D31	User defined
31	User defined	GND	User defined
32	User defined	+5Vdc	User defined

Table 5-25 identifies the PMC JN1 signals on the PMC Bridge J21 connectors.

Pin Number	Signal	Pin Number	Signal
1	ТСК	2	-12V
3	Ground	4	INTC
5	INTB#	6	INTA
7	BUSMODE1#	8	+5V
9	INTD#	10	PCI-RESERVED
11	Ground	12	PCI-RESERVED
13	CLK	14	Ground
15	Ground	16	GNTB#
17	REQB#	18	+5V
19	VDD(I/O)	20	AD31
21	AD28	22	AD27
23	AD25	24	Ground
25	Ground	26	C/BE3#
27	AD22	28	AD21
29	AD19	30	+5V
31	VDD(I/O)	32	AD17
33	FRAME#	34	Ground
35	Ground	36	IRDY#
37	DEVSEL#	38	+5V
39	Ground	40	LOCK#
41	SDONE#	42	SBO#
43	PAR	44	Ground
45	VDD(I/O)	46	AD15
47	AD12	48	AD11
49	AD09	50	+5V
51	Ground	52	C/BE0#
53	AD06	54	AD05
55	AD04	56	Ground
57	VDD(I/O)	58	AD03
59	AD02	60	AD01
61	AD00	62	+5V
63	Ground	64	REQ64#

Table 5-16PMC JN1 Signals (Bridge J21)

Table 5-25 identifies the PMC JN2 signals on the PMC Bridge J22 connectors.

Table 5-17PMC JN2 Signals (Bridge J22)

Pin Number	Signal	Pin Number	Signal
1	+12V	2	TRST#
3	TMS	4	TDO
5	TDI	6	Ground
7	Ground	8	PCI-RESERVED
9	PCI-RESERVED	10	PCI-RESERVED
11	BUSMODE2#	12	+3.3V
13	RST	14	BUSMODE3
15	+3.3V	16	BUSMODE4
17	PCI-RESERVED	18	Ground
19	AD30	20	AD29
21	Ground	22	AD26
23	AD24	24	+3.3V
25	IDSEL(1)	26	AD23
27	+3.3V	28	AD20
29	AD18	30	Ground
31	AD16	32	C/BE2#
33	Ground	34	PMC-RSVD
35	TRDY#	36	+3.3V
37	Ground	38	STOP#
39	PERR#	40	Ground
41	+3.3V	42	SERR#
43	C/BE1#	44	Ground
45	AD14	46	AD13
47	Ground	48	AD10
49	AD08	50	+3.3V
51	AD07	52	PMC-RSVD
53	+3.3V	54	PMC-RSVD
55	PMC-RSVD	56	Ground
57	PMC-RSVD	58	PMC-RSVD
59	Ground	60	PMC-RSVD
61	ACK64#	62	+3.3V
63	Ground	64	PMC-RSVD

Table 5-24 identifies the PMC JN1 signals on the PMC Bridge J11 connectors.

Pin Number	Signal	Pin Number	Signal
1	ТСК	2	-12V
3	Ground	4	INTB
5	INTC#	6	INTD
7	BUSMODE1#	8	+5V
9	INTA#	10	PCI-RESERVED
11	Ground	12	PCI-RESERVED
13	CLK	14	Ground
15	Ground	16	GNTA#
17	REQA#	18	+5V
19	VDD(I/O)	20	AD31
21	AD28	22	AD27
23	AD25	24	Ground
25	Ground	26	C/BE3#
27	AD22	28	AD21
29	AD19	30	+5V
31	VDD(I/O)	32	AD17
33	FRAME#	34	Ground
35	Ground	36	IRDY#
37	DEVSEL#	38	+5V
39	Ground	40	LOCK#
41	SDONE#	42	SBO#
43	PAR	44	Ground
45	VDD(I/O)	46	AD15
47	AD12	48	AD11
49	AD09	50	+5V
51	Ground	52	C/BE0#
53	AD06	54	AD05
55	AD04	56	Ground
57	VDD(I/O)	58	AD03
59	AD02	60	AD01
61	AD00	62	+5V
63	Ground	64	REQ64#

Table 5-18PMC JN1 Signals (Bridge J11)

Table 5-25 identifies the PMC JN2 signals on the PMC Bridge J12 connectors.

Table 5-19	PMC JN2 Signals (Bridge J12)
------------	------------------------------

Pin Number	Signal	Pin Number	Signal
1	+12V	2	TRST#
3	TMS	4	TDO
5	TDI	6	Ground
7	Ground	8	PCI-RESERVED
9	PCI-RESERVED	10	PCI-RESERVED
11	BUSMODE2#	12	+3.3V
13	RST	14	BUSMODE3
15	+3.3V	16	BUSMODE4
17	PCI-RESERVED	18	Ground
19	AD30	20	AD29
21	Ground	22	AD26
23	AD24	24	+3.3V
25	IDSEL(2)	26	AD23
27	+3.3V	28	AD20
29	AD18	30	Ground
31	AD16	32	C/BE2#
33	Ground	34	PMC-RSVD
35	TRDY#	36	+3.3V
37	Ground	38	STOP#
39	PERR#	40	Ground
41	+3.3V	42	SERR#
43	C/BE1#	44	Ground
45	AD14	46	AD13
47	Ground	48	AD10
49	AD08	50	+3.3V
51	AD07	52	PMC-RSVD
53	+3.3V	54	PMC-RSVD
55	PMC-RSVD	56	Ground
57	PMC-RSVD	58	PMC-RSVD
59	Ground	60	PMC-RSVD
61	ACK64#	62	+3.3V
63	Ground	64	PMC-RSVD

Table 5-21 identifies the PMC JN4 User Defined pin outs on the PMC Bridge J14 connector that is wired to the backplane P2 connector.

Pin Number	Signal	Pin Number	Signal
1	P2-C1	2	P2-A1
3	P2-C2	4	P2-A2
5	P2-C3	6	P2-A3
7	P2-C4	8	P2-A4
9	P2-C5	10	P2-A5
11	P2-C6	12	P2-A6
13	P2-C7	14	P2-A7
15	P2-C8	16	P2-A8
17	P2-C9	18	P2-A9
19	P2-C10	20	P2-A10
21	P2-C11	22	P2-A11
23	P2-C12	24	P2-A12
25	P2-C13	26	P2-A13
27	P2-C14	28	P2-A14
29	P2-C15	30	P2-A15
31	P2-C16	32	P2-A16
33	P2-C17	34	P2-A17
35	P2-C18	36	P2-A18
37	P2-C19	38	P2-A19
39	P2-C20	40	P2-A20
41	P2-C21	42	P2-A21
43	P2-C22	44	P2-A22
45	P2-C23	46	P2-A23
47	P2-C24	48	P2-A24
49	P2-C25	50	P2-A25
51	P2-C26	52	P2-A26
53	P2-C27	54	P2-A27
55	P2-C28	56	P2-A28
57	P2-C29	58	P2-A29
59	P2-C30	60	P2-A30
61	P2-C31	62	P2-A31
63	P2-C32	64	P2-A32

Table 5-20PMC JN4 Pin Outs (Bridge J14)

Table 5-21 identifies the PMC Bridge J3 connector that routes signals from the bridge board to the PMC expander board.

Table 5-21PMC Bridge J3 Connector

Pin Number	Signal	Pin Number	Signal	Pin Number	Signal
1	SYNC-EXP1	39	GSC-AD23	114	PCI-STOP-L
2	GSC-READY-L	40	GSC-AD24	115	PCI-AD0
3	GSC-RESET-L	41	GSC-AD25	116	PCI-AD1
4	GSC-ADDV-L	42	GSC-AD26	117	PCI-AD2
5	SYNC-EXP1-L	43	GSC-AD27	118	PCI-AD3
6	GSC-BR-L	44	GSC-AD28	119	PCI-AD4
7	GSC-BG-L	45	GSC-AD29	120	PCI-AD5
8	GSC-INTR-L	46	GSC-AD30	121	PCI-AD6
9	GSC-ERROR-L	47	GSC-AD31	122	PCI-AD7
10	GSC-PARITY	48	GSC-TYPE0	123	PCI-AD8
11	GSC-XO-L	49	GSC-TYPE1	124	PCI-AD9
12	GSC-LS-L	50	GSC-TYPE2	125	PCI-AD10
13	TRSTL	51	GSC-TYPE3	126	PCI-AD11
14	TMS	52	VDL	127	PCI-AD12
15	VDL	53	VDL	128	PCI-AD13
16	GSC-AD0	54	VDL	129	PCI-AD14
17	GSC-AD1	55	VDL	130	PCI-AD15
18	GSC-AD2	56	VDL	131	PCI-AD16
19	GSC-AD3	57	VDL	132	PCI-AD17
20	GSC-AD4	58-95	No connect	133	PCI-AD18
21	GSC-AD5	96	PCI-RST-L	134	PCI-AD19
22	GSC-AD6	97	PCI-SL3-CLK	135	PCI-AD20
23	GSC-AD7	98	PCI-FRAME-L	136	PCI-AD21
24	GSC-AD8	99	PCI-SL4-CLK	137	PCI-AD22
25	GSC-AD9	100	PCI-CBEO	138	PCI-AD23
26	GSC-AD10	101	PCI-CBE1	139	PCI-AD24
27	GSC-AD11	102	PCI-CBE2	140	PCI-AD25
28	GSC-AD12	103	PCI-CBE3	141	PCI-AD26
29	GSC-AD13	104	PCI-SERR-L	142	PCI-AD27
30	GSC-AD14	105	PCI-PERR-L	143	PCI-AD28
31	GSC-AD15	106	PCI-PAR	144	PCI-AD29
32	GSC-AD16	107	PCI-REQC-L	144	PCI-AD30
33	GSC-AD17	108	PCI-GNTC-L	146	PCI-AD31
34	GSC-AD18	109	PCI-REQD-L	147	PCI-INTA-L
35	GSC-AD19	110	PCI-GNTD-L	148	PCI-INTB-L
36	GSC-AD20	111	PCI-TRDY-L	149	PCI-INTC-L
37	GSC-AD21	112	PCI-IRDY-L	150	PCI-INTD-L
38	GSC-AD22	113	PCI-LOCK-L	151	PCI-DEVSEL-L
				152	VDL

Table 5-22 identifies the PMC JN1 signals on the PMC Expander J31 connectors.

Pin Number	Signal	Pin Number	Signal
1	ТСК	2	-12V
3	Ground	4	INTD
5	INTA#	6	INTB
7	BUSMODE1#	8	+5V
9	INTC#	10	PCI-RESERVED
11	Ground	12	PCI-RESERVED
13	CLK	14	Ground
15	Ground	16	GNTC#
17	REQC#	18	+5V
19	VDD(I/O)	20	AD31
21	AD28	22	AD27
23	AD25	24	Ground
25	Ground	26	C/BE3#
27	AD22	28	AD21
29	AD19	30	+5V
31	VDD(I/O)	32	AD17
33	FRAME#	34	Ground
35	Ground	36	IRDY#
37	DEVSEL#	38	+5V
39	Ground	40	LOCK#
41	SDONE#	42	SBO#
43	PAR	44	Ground
45	VDD(I/O)	46	AD15
47	AD12	48	AD11
49	AD09	50	+5V
51	Ground	52	C/BE0#
53	AD06	54	AD05
55	AD04	56	Ground
57	VDD(I/O)	58	AD03
59	AD02	60	AD01
61	AD00	62	+5V
63	Ground	64	REQ64#

Table 5-22PMC JN1 Signals (Expander J31)

Table 5-23 identifies the PMC JN2 signals on the PMC Expander J32 connectors.

Pin Number	Signal	Pin Number	Signal
1	+12V	2	TRST#
3	TMS	4	TDO
5	TDI	6	Ground
7	Ground	8	PCI-RESERVED
9	PCI-RESERVED	10	PCI-RESERVED
11	BUSMODE2#	12	+3.3V
13	RST	14	BUSMODE3
15	+3.3V	16	BUSMODE4
17	PCI-RESERVED	18	Ground
19	AD30	20	AD29
21	Ground	22	AD26
23	AD24	24	+3.3V
25	IDSEL(3)	26	AD23
27	+3.3V	28	AD20
29	AD18	30	Ground
31	AD16	32	C/BE2#
33	Ground	34	PMC-RSVD
35	TRDY#	36	+3.3V
37	Ground	38	STOP#
39	PERR#	40	Ground
41	+3.3V	42	SERR#
43	C/BE1#	44	Ground
45	AD14	46	AD13
47	Ground	48	AD10
49	AD08	50	+3.3V
51	AD07	52	PMC-RSVD
53	+3.3V	54	PMC-RSVD
55	PMC-RSVD	56	Ground
57	PMC-RSVD	58	PMC-RSVD
59	Ground	60	PMC-RSVD
61	ACK64#	62	+3.3V
63	Ground	64	PMC-RSVD

Table 5-24 identifies the PMC JN1 signals on the PMC Expander J41 connectors.

Pin Number	Signal	Pin Number	Signal
1	ТСК	2	-12V
3	Ground	4	INTA
5	INTB#	6	INTC
7	BUSMODE1#	8	+5V
9	INTD#	10	PCI-RESERVED
11	Ground	12	PCI-RESERVED
13	CLK	14	Ground
15	Ground	16	GNTD#
17	REQD#	18	+5V
19	VDD(I/O)	20	AD31
21	AD28	22	AD27
23	AD25	24	Ground
25	Ground	26	C/BE3#
27	AD22	28	AD21
29	AD19	30	+5V
31	VDD(I/O)	32	AD17
33	FRAME#	34	Ground
35	Ground	36	IRDY#
37	DEVSEL#	38	+5V
39	Ground	40	LOCK#
41	SDONE#	42	SBO#
43	PAR	44	Ground
45	VDD(I/O)	46	AD15
47	AD12	48	AD11
49	AD09	50	+5V
51	Ground	52	C/BE0#
53	AD06	54	AD05
55	AD04	56	Ground
57	VDD(I/O)	58	AD03
59	AD02	60	AD01
61	AD00	62	+5V
63	Ground	64	REQ64#

Table 5-24PMC JN1 Signals (Expander J41)

Table 5-25 identifies the PMC JN2 signals on the PMC Expander J42 connectors.

Pin Number	Signal	Pin Number	Signal
1	+12V	2	TRST#
3	TMS	4	TDO
5	TDI	6	Ground
7	Ground	8	PCI-RESERVED
9	PCI-RESERVED	10	PCI-RESERVED
11	BUSMODE2#	12	+3.3V
13	RST	14	BUSMODE3
15	+3.3V	16	BUSMODE4
17	PCI-RESERVED	18	Ground
19	AD30	20	AD29
21	Ground	22	AD26
23	AD24	24	+3.3V
25	IDSEL4)	26	AD23
27	+3.3V	28	AD20
29	AD18	30	Ground
31	AD16	32	C/BE2#
33	Ground	34	PMC-RSVD
35	TRDY#	36	+3.3V
37	Ground	38	STOP#
39	PERR#	40	Ground
41	+3.3V	42	SERR#
43	C/BE1#	44	Ground
45	AD14	46	AD13
47	Ground	48	AD10
49	AD08	50	+3.3V
51	AD07	52	PMC-RSVD
53	+3.3V	54	PMC-RSVD
55	PMC-RSVD	56	Ground
57	PMC-RSVD	58	PMC-RSVD
59	Ground	60	PMC-RSVD
61	ACK64#	62	+3.3V
63	Ground	64	PMC-RSVD

Real-Time Clock (RTC) Battery Information

The following section contains information on the real-time clock battery.

Battery Specifications

Table 5-26 summarizes the RTC battery specifications.

Table 5-26RTC Battery Specifications

Туре	Voltage	Manufacturer	Manufacturer Part No	HP Part No.	Battery Life Power Off	Battery Life Power On
Lithium	3 Vdc	RAYOVAC	BR-1225	1420-0541	12 Months	10 Years

WARNING: Danger of explosion if battery is incorrectly replaced.

Replace only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions.

Video Output Signal Specifications

The following input signal specifications are typical for all HP monitors:

- Output connector 15-pin MDSM
- Impedance 75 ohms Signal levels -
- Signal levels follow EIA standard RS-343A; white is positive. The composite sync is supplied on the green signal only. Horizontal sync pulses do not need to be supplied during the vertical sync pulse. However, the 75 Hz VESA-standard timing should use separate TTL horizontal and vertical syncs. Sync-on-green should not be supplied simultaneously with the separate syncs.

Video Timing Specifications

This section contains information on video timing specifications. These specifications are not the output timing specifications for any particular graphics option. They are the input specifications for Hewlett-Packard monitors. Table 5-27 summarizes the timing specifications for the 1280 x 1024 monitors at 72 Hz.

Signal	1280x1024 72 Hz
Horizontal active scan	9.482µs
Horizontal "back porch"	1.422µs
Horizontal blanking	3.318µs
Horizontal "front porch"	0.474µs
Horizontal period ("1H")	12.800µs
Horizontal sweep frequency	78.125KHz
Horizontal sync width	1.422µs
Pixel clock rate	135.000MHz
Vertical active period	13.107ms
Vertical "back porch"	704.00µs (55H)
Vertical blanking	0.780ms
Vertical frame rate	72.005Hz (non-in)
Vertical "front porch"	38.400µs (3H)
Vertical period	13.887ms
Vertical sync width	38.400µs (3H)

Table 5-27Timing Specifications at 72 Hz (A4490A)

Table 5-28 summarizes the timing specifications for the 1280 x 1024 monitors at VESA 75 Hz standard.

Signal	1280x1024
Horizontal active scan	9.481µs
Horizontal "back porch"	1.837µs
Horizontal blanking	3.022µs
Horizontal "front porch"	0.119µs
Horizontal period ("1H")	12.504µs
Horizontal sweep frequency	79.976KHz
Horizontal sync width	1.067µs
Pixel clock rate	135.000Mhz
Vertical active period	12.804ms
Vertical "back porch"	475.15µs
Vertical blanking	0.525ms
Vertical frame rate	75.025Hz (non-in)
Vertical "front porch"	13.000µs (1H)
Vertical period	13.329ms
Vertical sync width	37.520µs (3H)

Table 5-28Timing Specifications for VESA 75 HZ Standard (A4490A and A4575A)

In the past, Hewlett-Packard workstation timing was set with sync-on-green. The VESA standard provides separate TTL syncs, thereby providing an unambiguous way for the monitor to distinguish them.

Electrical Information

Power Requirements

6

This chapter discusses power distribution and monitor ac power specifications.

Power Supply Specifications

The power supply for the Model 745 is a 400 Watt ouput direct current (dc) power supply system with a universal ac front end operating from a 115/230 volt source. The input frequencies are 50 Hz and 60 Hz. The power supply also contains power factor correction.

The power supply accomodates the needs of all devices and options available for the Model 745 (within specifications for the options and applicable interface specifications). No power budgeting is required.

Table 6-1 shows the power supply specifications.

Table 6-1 Model 745 Power Supply Specifications (for reference only)

Output	+5	.1 V	+1	2 V	-12	2 V	-5.	2 V
	Min	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Total Regulation	4.95 V	5.25 V	11.65 V	12.60 V	-11.65 V	-12.60 V	-4.94 V	-5.46 V
Output Current - Peak	0 A	42.5 A	0 A	10.0 A	0 A	2.0 A	0 A	1.0 A
Line Regulation		25 mV		120 mV		120 mV		100 mV
Load Regulation		50 mV		120 mV		120 mV		100 mV
Cross Regulation		50 mV		120 mV		120 mV		100 mV
PARD to 20MHz BW		100 mV pk to pk		120 mV pk to pk		180 mV pk to pk		100 mV pk to pk
PARD to 200MHz BW		100 mV pk to pk		180 mV pk to pk		200 mV pk to pk		100 mV pk to pk
Dynamic Response		50 mV		120 mV		120 mV		100 mV
Recovery		500 µs		500 µs		500 µs		500 µs
Over Voltage Protection	6.0 V	6.6 V	15 V	17 V	-15 V	-17 V	-6.0 V	-7.0 V
Current Limit	45.0 A	55.0 A	15.5 A	20.0 A	4.0 A	8.0 A	1.5 A	4.0 A

Chassis Power Distribution

Figure 6-1 shows the power distribution for the Model 745 system. Power is distributed to the chassis backplane from the power supply through a set of cables. The board computer module and I/O backplane modules connect directly to the chassis backplane, not requiring cables. A series of cables provide power ro the LEDs, fans, and disk drives.

The front and rear ac power switches are three-way switches -- either can power on or off the system independently of the other.

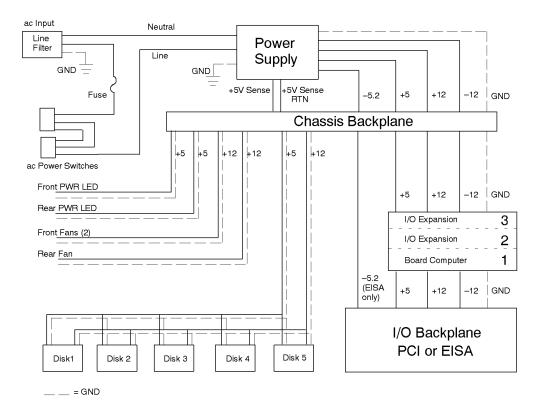
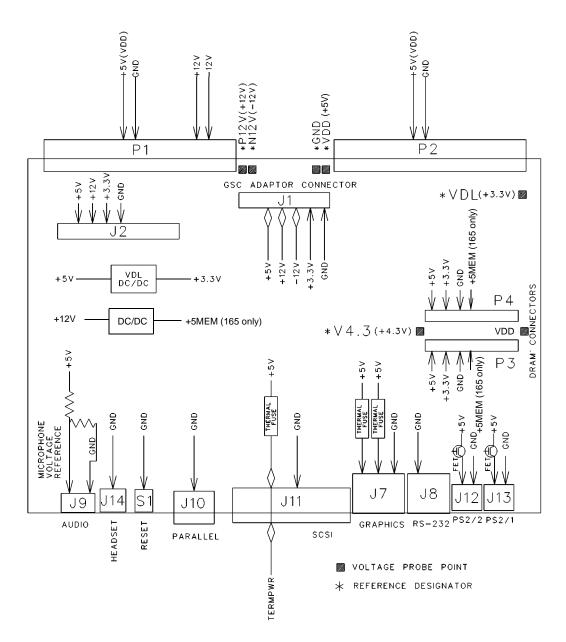


Figure 6-1


Model 745 Chassis Power Distribution

Power Requirements Chassis Power Distribution

The backplane connectors P1 and P2 distribute power to the Model 744 board computer, RAM cards , PMC adapters, and PMC option cards.

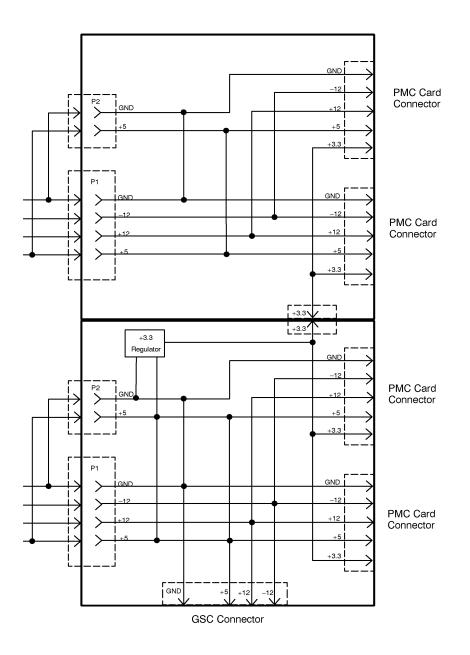

NOTE: Backplane P1 and P2 connectors use two or more pins to carry power or grounds to the board computer. Check the P1 and P2 pinout tables for exact pin identification for power and grounds.

Figure 6-2 illustrates the power distribution for the Model 744 board computers. Figure 6-3 illustrates the power distribution for the PMC adapters.

Model 744 Board Computer Power Distribution Diagram

PMC Adapters Power Distribution

Monitor Power Specifications

The following section describes the ac power specifications for the 17-inch and 19-inch monitors.

Table 6-2 summarizes the ac power specifications.

Table 6-2Monitor Power Specifications

Voltage Type	60 Hz	50 Hz
Maximum operating (Vac)	132	288
Minimum operating (Vac)	90	198
Nominal rated (Vac)	110	230
Rated line current (Arms)	2.7	1.5
Frequency range (not-strappable)	47 Hz to 63 Hz	47 Hz to 63 Hz

Index

A

AFR projections 3-12 annualized failure rate 3-12 audio 1-16 AUI LAN 1-17

В

boot ROM circuit 1-13

С

cables conversion 1-10, 4-22 Canadian Standards Association 3-2 chassis modules 4-23 parts 4-23 clock, battery backed real-time 1-19 clocks 1-8 **CODEC 1-16** component weights 4-21 conversion audio cable 5-7 conversion cables 1-10, 4-22 conversion HP parallel cable 5-9 conversion LAN cable 5-13 conversion RS-232 cable 5-11 conversion video cable 5-4, 5-5 CPU 1-8 CPU circuit 1-13

D

dimensions chassis backplane 4-9 chassis base module 4-4 chassis mid-tray 4-5 chassis top cover 4-3 disk adapter bracket 4-7 disk carrier 4-6 disk carrier lower shield 4-8 disk carrire upper shield 4-7 EISA backplane 4-8 Model 744 RAM card 4-17 Model 744 system board 4-12 Model 745 chassis 4-2 PCI backplane 4-9 PMC bridge adapter 4-19 PMC expansion adapter 4-20

EISA module 1-4

F

FCC 3-3 features, standard Model 744 1-8

G

graphics circuit 1-13

HP parallel port 1-18

I/O controller 1-15 I/O controller ASIC 1-15 input specifications 5-31 interface SCSI 1-3 interface connector 4-11

K

key components Model 744 4-10

Μ

main memory 1-8 manuals hardware 2-1 mass storage 1-3 mean time between failure 3-12 mechanical drawings 4-22 memory Model 744 1-9 memory controller circuit 1-14 monitor ac power specifications 6-1, 6-6 monitors environmental specifications 1-6 supported 1-3 MTBF computations 3-12

OEM support 1-21 operating system 1-8

Р

PCI module 1-4 pinouts audio connector 5-6 AUI LAN 5-12 backplane connector 5-17 HP parallel connector 5-8 PS/2 5-16RS-232 5-10 single-ended SCSI connector 5-14 video connector 5-3 PMC power distribution 6-5 PMC bridge adapter 4-19 PMC connectors 5-21, 5-22, 5-23, 5-24, 5-25, 5-26, 5-27, 5-28, 5-29, 5-30 PMC expansion adapter 4-20 power 6-4 power distribution 6-1 Model 744 6-4 PMC 6-5 product description Model 744 1-7 PS/2 ports 1-18

Q quality 3-1

R

RAM cards 1-14 real-time clock battery 5-31 RS-232 serial interface 1-19 RTC battery specifications 5-31

S

safety compliance programs 3-2 scsi terminators 1-3 SCSI interface 1-3 SE SCSI 1-17 single-ended SCSI 1-17 single-ended SCSI connector pins 5-15 specifications

video 5-31 standard support 1-21 statistical reliability 3-12 support OEM 1-21 standard 1-21 supported configurations 1-9 Model 745 1-2

т

terminators, SCSI 1-3 tests acoustics 3-10 climatic and environmental 3-8 power level 3-10 shock 3-11 vibration 3-11 TUC Rheinland 3-2

Underwriter's Laboratories 3-2 upgrades, three slots 1-8 upgrades, two slots 1-8 user interface 1-8

VCCI statement 3-4 video timing 5-31 Voluntary Control Council for Interference 3-4