
HP Diagnostics Guide

V2500/V2600 Servers

First Edition

A5824-96002

HP Diagnostics Guide: V2500/V2600 Servers

Customer Order Number: A5824-90002

December 1999

Printed in: USA

Revision History
Edition: First

Document Number: A5824-90002
Remarks: Initial release. December, 1999.

Notice

© Copyright Hewlett-Packard Company 1999. All Rights Reserved.
Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance
or use of this material.

Table of Contents iii

Contents

Preface . xix
Notational conventions . xix

1 Introduction . 1

Utilities board .2
Core logic. .6

Flash memory .6
Nonvolatile static RAM. .6
DUART. .6
RAM .6
Console ethernet .7
Attention lightbar .7
LCD .7
COP interface .7

SPUC .7
SMUC and Power-on .7

SMUC environmental monitoring .8
Environmental condition detected by power-on function9
Environmental conditions detected by SMUC.9

Environmental control .10
Power-on .10
Voltage margining .10
Clock margining .10

JTAG interface .10
SSP interface .11
DC test of a node .11
AC test of a node .11
JTAG fanout .11

System displays .12
Front panel LCD. .13

Node status line. .13
Processor status line .13
Message display line .15
Power supply indicators .16

Attention light bar .16
Environmental errors .17

LED display .18

2 Configuration management . 19

SSP .20

iv Table of Contents

ts_config . 21
Starting ts_config . 21
ts_config operation . 22
Configuration procedures . 24

Upgrade JTAG firmware . 24
Configure a Node . 26
Configure the scub_ip address . 30
Reset the Node . 31
Deconfigure a Node . 33
Add/Configure the Terminal Mux . 33
Remove terminal mux . 34
Console sessions. 34

V2500/V2600 SCA (multinode) configuration 36
V2500/V2600 split SCA configuration . 41
ts_config files . 44

SSP-to-system communications. 46
LAN communications . 47
SSP host name and IP addresses . 47
Serial communications . 48

ccmd . 49

xconfig . 51
Menu bar . 54
Node configuration map . 55
Node control panel . 56

Configuration utilities . 59
autoreset . 59
est_config . 59
report_cfg. 60

Effects of hardware and software deconfiguration 61
report_cfg summary report . 61
report_cfg ASIC report . 62
report_cfg I/O report . 62
report_cfg memory report . 63
report_cfg processor report . 64

xsecure . 64

3 Power-On Self Test . 67

Overview . 68
Reset . 69

POST modules . 70

Interactive mode. 73
Interactive mode commands. 73
Configuration parameters . 76

Table of Contents v

Messages .81
LCD messages .81
Console messages .81

Type-of-boot .81
Version and build .81
Processor probe .81
Utility board initialization .82
Main memory initialization .82
Memory probe .82
Installed memory .82
Main memory initialization started .82
Parallel memory initialization .83
Memory initialization progress .83
Building main memory map .84
Main memory initialization complete .84
Multinode memory initialization .84
Multinode memory configuration determination 84
ERI ring initialization. .84
CTI cache initialization. .85
Parallel CTI cache initialization .85
Memory and CTI cache initialization progress85
Remote memory testing .86
TOC routing .86
System control to boot client .86
Interactive boot .87

Chassis codes .87
Error messages .88

SSP parameters failure. .88
Configuration map failure .88
Configuration parameters failure .88
ASIC probe failure .88
Memory board deconfiguration .89
Illegal memory board configuration .89
Processor initialization failure .89
Monarch completing memory initialization.89
PDT checksum failure. .90
Memory hardware change detected .90
Memory remapped .90
Contiguous memory block not found .90
Processor not reported .90
Processor initialization/selftest failure .91
Processor not responding to interrupt .91
Shared Runway bus failure .91
New monarch processor selected .91
New monarch processor not found .92

vi Table of Contents

Multinode console error messages . 92
80-bit DIMM mode set. 92
Invalid CTI cache state . 92
Invalid local node size . 92
Corrupt multinode parameter. 93
Invalid memory configurations . 93
STAC deconfigured . 93
STAC initialization failure . 94
CTI cache initialization failure . 94
Memory board mismatch. 94
Invalid CTI cache size . 94
Interleave mismatch . 95
ERI ring failures . 95
Ethernet packet error . 96
Communications time-out . 97

4 Test Controller . 99

Test Controller modes . 100

User interface . 101
Main menu . 102
Test Configuration menu . 110

Example of running diagnostics from Test Controller command line . 117
Configuration . 117
Selecting classes and subtests . 120
Starting tests. 123
Viewing the results . 123

5 cxtest . 125

Overview . 126

Graphics interface . 128
Menus . 128

File menu . 129
Test menu . 129
Global Test Parameters menu . 131
Command menu. 132
System Configuration menu . 132
Help menu . 133

Display area . 134
Powering down the system . 134

Example of running diagnostics from cxtest window 135

Command line interface. 138
Command line options . 138
Command line test selections. 139

Table of Contents vii

Command line looping and pausing .139
Command line error counts .140
Command line class Selections .140
Command line subtest selections .141
Command line parameter specifications. .141
Changing test controller .142
Test output .142

6 Processor-dependent code firmware loader . 143

pdcfl loading, booting, and setup .144
NVRAM setup. .144
SSP setup .144

pdcfl commands .146

7 cpu3000. 149

cpu3000 classes and subtests .150
cpu3000 classes. .150
cpu3000 subtests .150

cpu3000 errors .155

8 eri3000 . 157

eri3000 classes and subtests .158
eri3000 classes .158
eri3000 subtests .158

User parameter definitions .164

eri3000 error messages .165
Type 1—CSR mismatch .165
Type 2—ERI mismatch .165
Type 3—ERI ring state error .166
Type 4—ERI cable pattern failure. .167
Type 5—ERI node routing failure .167
Type 6—ERI TAC routing failure .168
Type 7—ERI synchronization failure .169
Type 8—ERI Time of Century (TOC) Sync failure170
Type 9—Error(s) Detected by Another Node 170
Type 10—ERI System Error .171
Type 11—Default Error Message. .171
Event codes .171

9 io3000 . 173

io3000 classes and subtests. .174
io3000 classes .174
io3000 subtests .175
User parameters. .188

viii Table of Contents

Device specification . 191

io3000 error codes. 196
io3000 general errors . 196
io3000 device specification errors. 197
io3000 SAGA general errors. 197
io3000 SAGA CSR errors . 198
io3000 SAGA ErrorInfo CSR error. 199
io3000 SAGA ErrorCause CSR errors . 199
io3000 SAGA SRAM errors . 200
io3000 controller general errors . 201
io3000 PCI errors . 201
io3000 controller command errors . 202
io3000 DMA error . 203
io3000 SCSI inquiry error . 203
io3000 Symbios controller specific errors . 203
io3000 Tachyon controller specific errors . 204
io3000 DIODC driver errors . 205

10 mem3000 . 207

mem3000 classes and subtests . 208
mem3000 classes . 208
mem3000 subtests. 209

User parameters. 212

mem3000 error codes . 214
Error messages . 217

Type one error format . 217
Type two errors . 218
Type three errors. 219

Notes on mem3000 . 220

11 Scan test . 221

est utility test environment . 222
Control of utility board . 222
est exit and reset . 223
est user interfaces . 223

Running the est GUI . 224
System Test button . 225
ring button. 225
dc button . 225
ac button . 225
ga’s button . 225
Files button . 226
Options button. 226

Table of Contents ix

Power button. .226
Clocks button .227
Details button .227
Misc. button .227

Command line window .228
Connectivity test window .228
Gate array test window. .230
Scan window .232
SCI cable test window. .234

Help .235

Running est from command line .238
AC Connectivity test .241
Bypass test .242
DC Connectivity test .242
Gate Array test .242
SCI test .245
SCI_all test .246
JTAG Identification test. .246
Margin commands .246
est miscellaneous commands .247

est run time option commands .247
est command flags and options. .249

Script files .249

12 Utilities. 251

address decode .253

AutoRaid recovery map (arrm) .254

autoreset. .255

console .256
Escape Sequences .257
Example of console .259

consolebar. .260

cpu_hang .261
Fault isolation methods .261

Outstanding Coherency requests .261
Outstanding read/write short requests .262
Revision 2.0 PCXW timeout condition .262

Example using cpu_hang .262

dcm .263

dfdutil .267
dfdutil bootable device table .269
dfdutil LIF file table .270
dfdutil commands .271

x Table of Contents

DOWNLOAD command . 271
DISPMAP command . 272
DISPFILES command . 273
LS command . 274
RESET command. 274
UTILINFO command . 274
NODE command. 274
HELP command. 274

Notes and cautions about dfdutil . 275
Backup before downloads . 275
Halting the system during downloads . 275
Power cycling after a download. 275
Shared SCSI Buses . 276
Shared Nike Arrays . 276

dump_rdrs. 277

fwcp . 278

fw_init and fw_install . 279
fw_install . 281

get_node_info . 284

hard_logger . 286

lcd . 288

load_eprom . 289

opie . 292
Test modules . 292
Using opie . 292

pciromldr. 296
pciromldr commands. 296

Broadcast command. 296
Change target node command. 296
Display map command . 297
Download command. 297
Display files command. 297
Change cross reference table command . 298
Select and deselect cards commands . 298
Set option and value command . 298

pim_dumper . 300

set_complex. 302

soft_decode . 304

sppconsole . 305

tc_init . 309

tc_ioutil . 311

Table of Contents xi

tc_show_struct .312

Version utilities .315
diag_version .315
flash_info. .315
ver .316

Event processing .317
event_logger .317
log_event .318

Miscellaneous tools .320
fix_boot_vector .320
kill_by_name. .320

13 Scan tools. 321

sppdsh .322
Definitions. .323
Miscellaneous commands. .328
Data transfer commands .330
Data conversion commands .332
System information commands .334
Configuration commands .335
I/O buffering commands. .335
Enhancements .336
Map of alternate names .338

do_reset .340

jf-node_info. .342

jf-ccmd_info .343

jf-reserve_info .344

Appendix A: List of diagnostics. 345

Appendix B: LED codes . 349

Power on detected errors. .350

SCUB detected memory power fail. .355

SCUB detected processor error .356

SCUB detected I/O error .357

SCUB detected fan error .358

SCUB detected ambient air errors .359

SCUB detected hard error. .360

SCUB detected intake ambient air error .361

SCUB detected dc error. .362

xii Table of Contents

Displaying the SCUB LED values using pce . 363

Identifying a node with the blink command . 364

Appendix C: Memory configurations . 365

V2500/V2600 DIMM quadrant designations . 367

V2500/V2600 DIMM configuration rules . 369

V2500/V2600 memory board configuration rules 370

List of Figures xiii

Figures

 Figure 1 Location of the Utilities board .3
 Figure 2 Utilities board .5
 Figure 3 System displays .12
 Figure 4 Front panel LCD .13
 Figure 5 ts_config sample display. .22
 Figure 6 ts_config showing node 0 highlighted .25
 Figure 7 ts_config “Upgrade JTAG firmware” selection.. .25
 Figure 8 Upgrade JTAG firmware confirmation panel .26
 Figure 9 ts_config power-cycle panel .26
 Figure 10 ts_config indicating Node 0 as not configured. .27
 Figure 11 ts_config “Configure Node” selection. .27
 Figure 12 ts_config node configuration panel .28
 Figure 13 ts_config restart workspace manager panel.. .29
 Figure 14 ts_config indicating Node 0 is configured .29
 Figure 15 ts_config “Configure ‘scub_ip’ address” selection .30
 Figure 16 ts_config “SCUB OK” panel .30
 Figure 17 ts_config scub_ip address configuration confirmation31
 Figure 18 ts_config scub_ip address set confirmation panel .31
 Figure 19 ts_config “Reset Node” selection .32
 Figure 20 ts_config node reset panel .32
 Figure 21 ts_config “Add/Configure Terminal Mux” selection 33
 Figure 22 Terminal mux IP address panel .34
 Figure 23 “Start Console Session” selection .35
 Figure 24 Started console sessions .35
 Figure 25 SSP supporting two single-node complexes .36
 Figure 26 ts_config Configure Multinode complex selection .37
 Figure 27 Configure Multinode Complex dialog window .37
 Figure 28 Configure Multinode Complex dialog window with appropriate values 39
 Figure 29 Configuration started information box. .39
 Figure 30 ts_config showing newly configured complexes. .41
 Figure 31 ts_config Split Multinode complex operation .42
 Figure 32 ts_config Split Multinode complex panel. .42
 Figure 33 ts_config Split Multinode complex panel filled in .43
 Figure 34 Split Multinode confirmation panel .43
 Figure 35 ts_config Split Multinode operation complete .43
 Figure 36 SSP-to-system communications .46
 Figure 37 xconfig window—physical location names .52
 Figure 38 xconfig window—logical names .53
 Figure 39 xconfig window menu bar .54
 Figure 40 xconfig window node configuration map. .55

xiv List of Figures

 Figure 41 xconfig window node control panel . 57
 Figure 42 cxtest menu . 128
 Figure 43 Test Class Selection menu. 130
 Figure 44 cxtest Global Test Parameters menu. 131
 Figure 45 System configuration window . 133
 Figure 46 mem3000 Test Class Selection window . 135
 Figure 47 mem3000 Class 1 Subtest Selections window . 136
 Figure 48 mem3000 Test Parameters window. 136
 Figure 49 Type 1 error message format. 165
 Figure 50 Type 2 error message format. 166
 Figure 51 Type 3 error message format. 166
 Figure 52 Type 4 error message format. 167
 Figure 53 Type 5 error message format. 168
 Figure 54 Type 6 error message format. 168
 Figure 55 Type 7 error message formats . 169
 Figure 56 Type 8 error message formats . 170
 Figure 57 io3000 test parameter device specification for directly attached

SCSI targets (words 8-19) . 192
 Figure 58 io3000 test parameter device specification for Fibre Channel

attached SCSI targets (words 20-37) . 193
 Figure 59 Format of parameter 6. 213
 Figure 60 Format of parameter7 . 213
 Figure 61 Type one error message format . 218
 Figure 62 Type two error message format. 218
 Figure 63 Corresponding type two values to DIMM location. 219
 Figure 64 Type 3 error message format. 219
 Figure 65 est main window. 224
 Figure 66 est command line window . 228
 Figure 67 est connectivity window . 229
 Figure 68 est gate array test window. 230
 Figure 69 est scan window . 232
 Figure 70 est SCI cable test window . 234
 Figure 71 est Help window . 236
 Figure 72 est Help browser window . 237
 Figure 73 tc_init NVRAM entry . 309
 Figure 74 V2500/V2600 DIMM locations. 368

List of Tables xv

Tables

Table 1 Environmental conditions monitored by the SMUC and power-on circuit . . .8
Table 2 Processor initialization steps .13
Table 3 Processor run-time status codes .14
Table 4 Message display line .15
Table 5 ts_config status values .23
Table 6 report_cfg options .60
Table 7 SIC entry values .74
Table 8 Name of SSP IP address for listed utilities .76
Table 9 Name of scub IP address for listed utilities .77
Table 10 Name of CTI cache size IP address for listed utilities77
Table 11 Name of boot module for listed utilities .77
Table 12 Name of selftest enable for listed utilities .78
Table 13 Name of scuba test enable for listed utilities .78
Table 14 Name of master error enable for listed utilities .78
Table 15 Name of use error overides for listed utilities .79
Table 16 Name of force monarch for listed utilities .79
Table 17 Name of monarch number for listed utilities .79
Table 18 Name of local node size number for listed utilities .80
Table 19 Processor States .106
Table 20 Parameter Defaults .113
Table 21 Test patterns for subtests 230-238 and 330-338 .122
Table 22 Command line loading options. .139
Table 23 Looping, pause, and control options .140
Table 24 Classes of cpu3000 tests .150
Table 25 cpu3000 Class 1 subtests .151
Table 26 cpu3000 Class 2 subtests .152
Table 27 cpu3000 Class 3 subtests .152
Table 28 cpu3000 Class 4 subtests .152
Table 29 cpu3000 Class 5 subtests .153
Table 30 Classes of eri3000 tests .158
Table 31 eri3000 Class 1 subtests .159
Table 32 eri3000 Class 2 subtests .160
Table 33 eri3000 Class 3 subtests .162
Table 34 eri3000 Class 4 subtests .163
Table 35 User parameter definitions .164
Table 36 ERI ring states .167
Table 37 Event codes .171
Table 38 Classes of io3000 test .174
Table 39 io3000 Class 1 subtests .175
Table 40 io3000 Class 2 subtests .176

xvi List of Tables

Table 41 io3000 Class 5 subtests . 178
Table 42 io3000 Class 6 subtests . 179
Table 43 io3000 Class 7 subtests . 180
Table 44 io3000 Class 8 subtests . 182
Table 45 io3000 Class 11 subtests . 183
Table 46 io3000 Class 12 subtests . 184
Table 47 io3000 Class 15 subtests . 186
Table 48 io3000 Class 16 subtests . 187
Table 49 io3000 Class 17 subtests . 187
Table 50 io3000 Class 18 subtests . 188
Table 51 io3000 test parameters . 189
Table 52 io3000 user test parameter word 0 bit definition . 190
Table 53 io3000 bit definition for direct SCSI device specification (words 8-19) . . . 192
Table 54 io3000 bit definition for Fibre Channel attached SCSI device

 specification (words 29-37) . 193
Table 55 io3000 SAGA name to number correlation . 195
Table 56 io3000 general error codes . 196
Table 57 io3000 device specification error codes . 197
Table 58 io3000 SAGA general errors . 198
Table 59 io3000 SAGA CSR errors . 198
Table 60 io3000 SAGA ErrorInfo CSR error . 199
Table 61 io3000 SAGA ErrorCause CSR errors . 200
Table 62 io3000 SAGA SRAM errors . 200
Table 63 io3000 Controller general errors . 201
Table 64 io3000 PCI errors . 202
Table 65 io3000 controller command errors . 202
Table 66 io3000 DMA error . 203
Table 67 io3000 SCSI inquiry error . 203
Table 68 io3000 Symbios controller specific errors . 204
Table 69 io3000 Tachyon controller specific errors . 204
Table 70 io3000 DIODC controller specific errors . 205
Table 71 Symbios controller status codes . 205
Table 72 mem3000 test classes . 208
Table 73 mem3000 class 1 subtests . 209
Table 74 mem3000 class 2 subtests . 209
Table 75 mem3000 class 3 subtests . 210
Table 76 mem3000 class 4 subtests . 210
Table 77 mem3000 class 5 subtests . 210
Table 78 mem3000 class 6 subtests . 211
Table 79 User parameter definitions . 212
Table 80 mem3000 error codes . 214
Table 81 Extended range for error codes . 216
Table 82 Patterns used in specified subtests . 217
Table 83 est command line options . 238
Table 84 AC Connectivity test options . 242

List of Tables xvii

Table 85 Dc Connectivity test options .242
Table 86 Gate Array test options .243
Table 87 Valid values for clock and power supplies .247
Table 88 est runtime option commands .248
Table 89 console options .256
Table 90 console escape sequence commands .257
Table 91 load_eprom options .290
Table 92 pim_dumper options .300
Table 93 kill_by_name options .320
Table 94 sppdsh parameters .324
Table 95 Valid COP IDs .326
Table 96 System rings to alternates names .339
Table 97 List of diagnostics .345
Table 98 SCUB detects power on error .350
Table 99 SCUB detects memory power fail .355
Table 100 SCUB detects processor power fail .356
Table 101 SCUB detects I/O (IOB) power fail .357
Table 102 SCUB detects fan power fail .358
Table 103 SCUB detects ambient air error .359
Table 104 Hard error .360
Table 105 Ambient air (intake) error .361
Table 106 dc error .362
Table 107 DIMM row/bus table .366
Table 108 Quadrant assignments .367
Table 109 Memory board configurations .370

xviii List of Tables

Preface xix

Preface

This document describes the offline diagnostics for V2500 and V2600
servers. It is not intended to be a tutorial or troubleshooting guide but a
reference guide that contains information on all utilties and scripts used
to troubleshoot these systems.

Notational conventions
This section describes notational conventions used in this book.

bold monospace In command examples, bold monospace
identifies input that must be typed exactly as
shown.

monospace In paragraph text, monospace identifies
command names, system calls, and data
structures and types.
In command examples, monospace identifies
command output, including error messages.

italic In paragraph text, italic identifies titles of
documents.
In command syntax diagrams, italic identifies
variables that you must provide.
The following command example uses
brackets to indicate that the variable
output_file is optional:
command input_file [output_file]

xx Preface

Preface
Notational conventions

NOTE A note highlights important supplemental information.

CAUTION A caution highlights procedures or information necessary to avoid
damage to equipment, damage to software, loss of data, or invalid test
results.

Brackets ([]) In command examples, square brackets
designate optional entries.

Curly brackets ({}),
Pipe (|)

In command syntax diagrams, text
surrounded by curly brackets indicates a
choice. The choices available are shown inside
the curly brackets and separated by the pipe
sign (|).
The following command example indicates
that you can enter either a or b:
command {a | b}

Keycap Keycap indicates the keyboard keys you must
press to execute the command example.

Chapter 1 1

1 Introduction

This chapter presents an overview of the diagnostic mechanism for
V2500/V2600 servers.

2 Chapter 1

Introduction
Utilities board

Utilities board
The diagnostic mechanism in the V2500 and V2600 servers is centered
around the Stingray Core Utilities board (SCUB). The SCUB is mounted
under the MidPlane Interconnect board (MIB) toward the front of the
system. See Figure 1.

Chapter 1 3

Introduction
Utilities board

 Figure 1 Location of the Utilities board

Power board

MidPlane

Utilities board

12/7/98
IOEXS120

4 Chapter 1

Introduction
Utilities board

The following devices connect to the Utilities board:

• Core logic bus

• Environmental sensors

• Test points

• Liquid crystal display (LCD)

• Attention lightbar

• SSP

The Service Support Processor (SSP) connects to the system via the
ethernet and RS232 connections. The SSP is used for configuring,
monitoring, testing, and error logging and is not required for normal
operation of a node. A system will boot and operate without a SSP,
and failure of the SSP will not cause interruption of the system.

Figure 2 shows the Utilities board functional layout.

The following hardware components comprise the Utilities board:

• Core logic—Contains initialization, booting firmware, controller for
ethernet and RS-232 interface, and various memories.

• Stingray Monitor Utilities controller (SMUC)—Collects
environmental interrupts.

• Power-On circuit—Controls powering up the entire system.

Environmental sensors are located throughout the system and
connect to the SMUC. The SMUC latches interrupts from these
sensors as well as other interrupts. The SMUC and the power-on
circuit together control system power-up. The power-on circuit drives
the attention lightbar diagnostic display through which the operator
can determine power-on status.

• Stingray Processor Utilities controller (SPUC)—Interfaces to the core
logic bus.

The SPUC connects to the two core logic buses. Each bus connects up
to four Stingray Processor Agent Controllers (SPACs).

• JTAG (Joint Test Action Group) interface—Supports a SSP for
running diagnostics. The V2500/V2600 servers use a test method
called scanning to test boards and other hardware units.

Chapter 1 5

Introduction
Utilities board

The microprocessor-controlled JTAG interface captures incoming
command packets and sends out scan information packets across the
ethernet connection to the SSP. Through the SSP connection, one can
read and write every CSR in the system.

 Figure 2 Utilities board

10/12/99
IOEXS118

Core logic bus Core logic bus

MIB

Hard errors and
environmental

sensorsscanning
Node

To
power

Ethernet

Utility bus

Utilities board

Led displayRS232 RS232Ethernet

SSP

SPACSPACSPAC SPAC SPAC SPAC SPACSPAC

logic
Clock

JTAG
controller

and interface

SPUC SMUC

Power-on

display
Liquid crystal

Core logic

power
To

6 Chapter 1

Introduction
Utilities board

Core logic
The core logic contains initialization and booting firmware and is
described in the following sections.

Flash memory
The core logic contains a four-MByte electrically erasable programmable
read only memory (EEPROM) storage for Processor-Dependent Code
(PDC). PDC consists of Power-On Self Test (POST) and Open Boot
PROM (OBP). The V2500/V2600 server uses these two components plus
additional firmware called spp_pdc that is laid over OBP and interfaces
OBP to HP-UX. Flash memory also contains all diagnostic test, utilities,
and scripts.

Flash memory is configured as 512-KByte addresses by 32 data bits with
only 32-bit read and write accesses allowed. EEPROM devices are used
for flash memory so that it may be rewritten for field upgrades. It can
also be written when the SPUC is scanned.

Nonvolatile static RAM
The core logic section contains a nonvolatile battery-backed 128-Kbyte
RAM (NVRAM) for storing system log and configuration information.
This RAM is byte addressable and can be accessed even after power
failures.

DUART
A Dual Universal Asynchronous Receiver-Transmitter (DUART)
provides to RS232 serial ports and a single parallel port. One serial port
provides an interface to a terminal used as a local console to analyze
problems, reconfigure the system, and provide other user access.The
parallel port of the DUART drives the LCD. The second RS-232 port can
be used for a modem for field service.

RAM
Random access memory (RAM) provides support for the core system
functions. When the system powers up, the processors operate out of this
RAM to run self test and configure the rest of the node. Once the system
is fully configured, the processors execute out of main memory. The RAM
is byte addressable and is 512 KBytes, configured as 128-KByte
addresses by 32 data bits.

Chapter 1 7

Introduction
Utilities board

Console ethernet
The ethernet I/O port provides a connection to the SSP over LAN1.

Attention lightbar
The attention light bar displays environmental information, such as the
source of an environmental error that caused the Utilities board to power
down the node.

LCD
The liquid crystal display provides basic system information. The core
logic drives the LCD through the parallel port on the DUART. The
attention lightbar and LCD are detailed in “System displays” on page 12.

COP interface
A serial EEPROM (referred to as COP chip) is located on major boards
with information such as serial number, assembly revision, wire revision,
truncated board part number, and so on. The SMUC connects to the COP
bus selector (CBS) chip on the MIB allowing each COP chip in a node to
be read.

SPUC
The SPUC provides interrupts and error messages to and receives
control messages from the processors through two 18-bit, bidirectional
buses. Each bus connects up to four SPACs. The SPUC also provides core
logic bus arbitration for the processors.

SMUC and Power-on
The SMUC registers system environmental parameters. It connects to
the utilities bus so that processors can monitor the node by accessing the
appropriate CSRs. The SMUC works in conjunction with the power-on
circuit to power up the entire system, and it can operate when the rest of
the node is powered off or in some indeterminate state.

The SMUC drives the environment LCD display. The SSP can also read
the environmental LCD display using the sppdsh utility. See “sppdsh”
on page 322.

8 Chapter 1

Introduction
Utilities board

SMUC environmental monitoring
The following environmental conditions are monitored:

• ASIC installation error sensing

• FPGA configuration and status

• Thermal sensing

• Fan Sensing

• Power failure sensing

• 48-V failure

• 48-V maintenance

• Ambient air temperature sensing.

• Power-on

Table 1 Environmental conditions monitored by the SMUC and power-on
circuit

Condition Type Action

ASIC Not Installed
OK

Environmental
error

Power not turned on, LED
indication

FPGA not OK Environmental
error

Power not turned on, LED
indication

48-V Fail Environmental
error

Power turned off, LED
indication

MIB power fail Environmental
error

Power turned off, LED
indication

Board over temp Environmental
error

Power off in one second,
LED indication interrupt

Fan not turning Environmental
error

Power off in one second,
LED indication interrupt

Ambient air hot Environmental
error

Power off in one second,
LED indication interrupt

Other power fail Environmental
error

Power off in one second,
LED indication interrupt

Chapter 1 9

Introduction
Utilities board

Environmental condition detected by power-on
function
The power-on function detects environmental errors (such as ASIC Not
Installed OK or FPGA Not OK). It does not turn on power to the node
until the conditions are corrected. It also detects environmental errors
such as 48-V Fail while the system is powering up and MIB Power Fail
after the system has powered up. If a failure is detected in these two
cases, the power-on circuit turns off power to the system.

Environmental warnings such as 48-Volt maintenance are also detected
by the power-on circuit.

In all cases, the power-on circuit sets an environmental attention light
bar code. The code is prioritized so that it displays the highest priority
error or warning. See “Attention light bar” on page 16 for a list of codes.

Environmental conditions detected by SMUC
The SMUC detects most of the environmental conditions. It samples
error conditions during a time period derived from a local 10-Hz clock
that drives the power-on circuit. It registers all the environmental error
conditions twice and then logically ORs them together. If the conditions
persist for 200 mS, the environmental error bit is set, and an
environmental error interrupt is sent to the SPUC, which sends it on to
the processors. The SMUC then waits 1.2 seconds and commands the
power-on circuit to power down the system.

This same procedure exists for an environmental warning, except that
an environmental warning interrupt is sent and the power-on circuit
does not power down the system.

Ambient air warm Environmental
warning

LED indication, interrupt

48-Volt maintenance Environmental
warning

LED indication, interrupt

Hard error Hard error LED indication, interrupt

Condition Type Action

10 Chapter 1

Introduction
Utilities board

The environmental error interrupt and the 1.2 second delay provide the
system adequate time to read CSRs to determine the cause of the error,
log the condition in NVRAM, and display the condition on the attention
lightbar.

After the system is powered down, the Utilities board is still powered up,
but all outputs are disconnected from the system.

Environmental control
The Utilities board performs the following functions to control the node
environment.

Power-on
When the power switch is turned on, the outputs of the 48-Volt power
supplies become active. Several hundred milliseconds after the Utilities
board 5-Volt supply reaches its nominal level, the power-on circuit starts
powering up the other DC-to-DC converters of the node in succession.

The power-on circuit does not power up the node if an ASIC is installed
incorrectly. It keeps the system powered up unless an environmental
condition occurs that warrants a power-down.

Voltage margining
Voltage margin is divided into four groups called quadrants. The user
can margin quadrants separately. When setting the upper margin, for
example, all boards in that quadrant are margined for upper.

Clock margining
Parallel ports on the core logic microprocessor select the nominal, upper,
or external clock that drives the node.

JTAG interface
The JTAG interface supports a SSP and a mechanism to fanout JTAG to
all the boards in a node. It is used only for testing.

JTAG functions are described in the following sections.

Chapter 1 11

Introduction
Utilities board

SSP interface
The SSP can be a PA-RISC based workstation. The interface to the SSP
is an ethernet AUI port for flexibility in connecting to many
workstations. It is also easily expandable.

DC test of a node
To perform the DC test, the Test Bus Controller (TBC) first scans data
to all boards in a node. Then each JTAG device performs a capture step
that completes the movement of the test data from the driver to the
receiver. This step is described in the JTAG 1149.1 specification.

AC test of a node
To perform the AC test, the Test Bus Controller (TBC) scans data to all
boards in a node and then loads an AC test instruction into all ASICs
on one board at a time. The scan ring on each board is paused.

Once all boards have been loaded with the AC test instruction, the TBC
takes all boards out of pause mode simultaneously, causing them all to
exit update together and execute the AC test.

The AC test enables clocks inside the ASICs so that they test internal
and external paths at the system clock rate. They all execute on the same
system clock.

JTAG fanout
The SSP interface is thin ethernet. In addition to the SSP, this port is
also used for the console ethernet. There is one cable that connects to all
the nodes and to the SSP (if it exists) and to whatever device or network
that will display the console.

12 Chapter 1

Introduction
System displays

System displays
The V2500/V2600 server provides two means of displaying status and
error reporting: an LCD and an Attention light bar.

 Figure 3 System displays

9/18/97
IOLM010

TOC

DC ON

DC OFF

CONSOLE
ENABLE

CONSLOLE
SECURE

LCD display

Attention light bar

Chapter 1 13

Introduction
System displays

Front panel LCD
The front panel is a 20-character by 4-line liquid crystal display as
shown in Figure 4.

 Figure 4 Front panel LCD

When the node key switch is turned on, the LCD powers up but is
initially blank.

Node status line
The Node Status Line shows the node ID in both decimal and X, Y
topology formats.

Processor status line
The processor status line shows the current run state for each processor
in the node. Table 2 shows the initialization step code definitions and
Table 3 shows the run-time status codes. The M in the first processor
status line stands for the monarch processor.

Table 2 Processor initialization steps

MIII IIII IIII IIII
0 (0,0)

IIII IIII IIII IIII
abcedfghijklr

Node status line

Processor status line, lower processors

Processor status line, upper processors

Message display line

Step Description

0 Processor internal diagnostic register initialization

1 Processor early data cache initialization.

2 Processor stack SRAM test.(optional)

3 Processor stack SRAM initialization.

4 Processor BIST-based instruction cache initialization.

14 Chapter 1

Introduction
System displays

Table 3 Processor run-time status codes

5 Processor BIST-based data cache initialization

6 Processor internal register final initialization.

7 Processor basic instruction set testing. (optional)

8 Processor basic instruction cache testing. (optional)

9 Processor basic data cache testing. (optional)

a Processor basic TLB testing (optional)

b Processor post-selftest internal register cleanup. (optional)

Status Description

P POST interactive: processing interactive console input.

R RUN: Performing system initialization operations.

I IDLE: Processor is in an idle loop, awaiting a command.

M MONARCH: The main POST initialization processor.

H HPMC: processor has detected a high priority machine
check (HPMC).

T TOC: processor has detected a transfer of control (TOC).

S SOFT_RESET: processor has detected a soft RESET.

D DEAD: processor has failed initialization or selftest.

d DECONFIG: processor has been deconfigured by POST or
the user.

- EMPTY: Empty processor slot.

? UNKNOWN: processor slot status in unknown.

Step Description

Chapter 1 15

Introduction
System displays

Message display line
The message display line shows the POST initialization progress. This is
updated by the monarch processor. The system console also shows detail
for some of these steps. Table 4 shows the code definitions.

Table 4 Message display line

Message
display code

Description

a Utilities board (SCUB) hardware initialization.

b Processor initialization/selftest rendezvous.

c Utilities board (SCUB) SRAM test. (optional)

d Utilities board (SCUB) SRAM initialization.

e Reading Node ID and serial number.

f Verifying non-volatile RAM (NVRAM) data
structures.

g Probing system hardware (ASICs).

h Initializing system hardware (ASICs).

i Probing processors.

j Initialing, and optionally testing, remaining SCUB
SRAM.

k Probing main memory.

l Initializing main memory.

m Verifying multi-node hardware configuration.

n Multinode initialization starting synchronization.

o Multinode hardware initialization.

p Multinode hardware verification.

q Multinode initialization ending synchronization.

r Enabling system error hardware.

16 Chapter 1

Introduction
System displays

Power supply indicators
When the keyswitch on the operator panel is in the DC ON position both
the AC power (amber) LED and the DC power (green) LED on each of the
power supplies should be on.

Attention light bar
The Attention light bar is located at the top left corner on the front of the
V2500/V2600 server as shown in Figure 3 on page 12. The light bar
displays system status in three ways:

• OFF—dc power is turned off. Either the key switch or the side circuit
breaker is in the off position.

• ON—Both the side circuit breaker and the keyswitch are in the on
position and no environmental warning, error, or hard error exists.

• Flashing—There is an environmental error, warning, or hard error
condition. Also indicates scanning during diagnostic execution.

NOTE The light bar flashing during initial start up does not indicate a fault.

The types of environmental conditions that are monitored include:

• ASIC installation error sensing

• ASIC configuration or status

• 48V failure

NOTE 48V failures are cleared only after a power cycle.

• Power failure sensing

• Fan sensing

• Thermal sensing

Types of environmental control functions monitored include:

• Power-on

• Voltage margining (SSP interface)

Chapter 1 17

Introduction
System displays

Environmental errors
Environmental errors are detected by two basic systems in the V2500/
V2600 server: Power-On and Environmental Monitor Utility Chip
(MUC).

Power-On detected errors such as ASIC install or ASIC not OK are
detected immediately and will not allow dc power to turn on until that
condition is resolved.

MUC detected errors such as Ambient Air Hot allows the dc power to
turn on for approximately 1.2 seconds before the dc power is turned off. If
two or more fans fail simultaneously, the MUC will shut off dc power.
Other MUC detected errors such as Ambient Air Warm will flash the
LED and not turn off dc power.

Error codes may be viewed by using the SSP utility command pce to
read the status of the CUB. However, this feature will only work after
database generation is complete, not before.

Using the SSP utility man LEDs to decode the CUB status nibbles.

The current environmental temperature set-points are:

• Warm = 32 degrees Celsius (89.6 degrees Fahrenheit)

• Hot = 37 degrees Celsius (98.6 degrees Fahrenheit)

Displaying the SCUB LED values using pce
Use the sppdsh command pce to display the value of the LEDs on the
SCUB.

Step 1. Bring up the sppdsh prompt at a sppuser window by entering:

$ sppdsh

Step 2. Use the pce command to display the LED values for all nodes, enter:

sppdsh: pce all

Node IP address Clocks LEDS @C U SHPT Supply1 Supply2 Supply3 Supply4

------------------- ------ --------- ---- ------ ------- ------- ------- -------

 0 15.99.111.116 Normal 0x00 25 1 0000 Nominal Nominal Nominal Nominal

 2 15.99.111.117 Normal 0x00 25 1 0000 Nominal Nominal Nominal Nominal

For more information about the pce command see the sppdsh man page.

Step 3. Decode the LED values using Appendix A, “LED codes” .

18 Chapter 1

Introduction
System displays

Identifying a node with the blink command
The blink command is used to physically identify a node. This command
forces the node attention light bar to blink or turns off blinking, provided
an error does not exist on the node.

Step 1. Bring up the sppdsh prompt at a sppuser window by entering:

$ sppdsh

Step 2. Use the blink command to cause the attention light bar to blink on a
specific node by entering the blink command followed by the node
number. For example:

sppdsh: blink 0

For more information about the blink command see the sppdsh man
page.

Step 3. After you have physically identified the node cause the attention light
bar to return to a steady state by entering:

sppdsh: blink 0

LED display
The Attention LED on the core utilities board (CUB) turns on, and the
Attention light bar on the front of the node flashes to indicate the
presence of an error code listed Table 98. Additionally, only the highest
priority error is displayed. Once remedied, an error that is cleared may
expose a lesser priority error.

Chapter 2 19

2 Configuration management

The SSP allows the user to configure a node using the ts_config utility.
ts_config sets up the SSP to communicate with the node. The SSP
daemon, ccmd, monitors the node and reports back configuration
information, error information and general status. ts_config must be
run before using ccmd.

Two additional utilities, sppdsh and xconfig, allow reading or writing
configuration information and changing it. Another utility covered in
this chapter, report_cfg, provides configuration reports. OBP can also
be used to modify the configuration. For information concerning sppdsh,
see “sppdsh” on page 322.

20 Chapter 2

Configuration management
SSP

SSP
The SSP is used for configuring, monitoring, testing, and error logging. It
is not required for normal operation of a node.

The SSP communicates with the JTAG interface in the nodes. The JTAG
port remains idle if no SSP is connected to it. It receives communications
packets, interprets requests, and generates responses to them. The
hardware on the node can read board information, system configuration,
device revisions, and environmental conditions. When a SSP is present,
all of these parameters are read or written by the configuration
management tools.

The configuration management daemon, ccmd, initiates communications
between the SSP and the nodes.

Chapter 2 21

Configuration management
ts_config

ts_config
ts_config [-display display name]

Any V2500/V2600 nodes added to the SSP must be configured by
ts_config to enable diagnostic and scan capabilities, environmental
and hard-error monitoring, and console access.

Once the configuration for each node is set, it is retained when new SSP
software is installed.

ts_config tasks include:

• Configuring a node—Adding and removing a node to the SSP
configuration

• Configuring the terminal mux—Configuring and removing the
terminal mux on the SSP

• Installing a node—Upgrading JTAG firmware, configuring a node
scub_ip address, and resetting a node

• Configuration of Multiple-node complex—Configuring V2500/V2600
nodes into a single complex and splitting V2500/V2600 nodes out of a
multiple-node complex.

• Operational support—Resetting a V2500/V2600 node or multiple-
node complex and starting console sessions.

The user must have root privilege to configure a node or the terminal
mux, because several HP-UX system files are modified during the
configuration.

Starting ts_config
To start ts_config from the SSP desktop, click on an empty area of the
background to obtain the Workspace menu and then select the
ts_config (root) option. Enter the root password.

To start ts_config from a shell (local or remote), ensure that the
DISPLAY environment variable is set appropriately before starting
ts_config.

22 Chapter 2

Configuration management
ts_config

For example:

$ DISPLAY=myws:0; export DISPLAY (sh/ksh/sppdsh)
% setenv DISPLAY myws:0 (csh/tcsh)

Also, the -display start-up option may be used as shown below:

For example:

/spp/bin/ts_config -display myws:0

NOTE For shells that are run from the SSP desktop, the DISPLAY variable is
set (at the shell start-up) to the local SSP display.

ts_config operation
The ts_config utility displays an active list of nodes that are powered
up and connected to the SSP diagnostic LAN. The operator selects a node
and configures the selected node. A sample display is shown below.

 Figure 5 ts_config sample display

The window has three main parts: the drop-down menu bar, the display
panel, and the message panel. The display panel contains a list of nodes
and their status. To select a node, click with the left-mouse button the
line containing the desired node entry in the list. When a node is
selected, information about that node is shown in the message panel at
the bottom of the ts_config window. If an action needs to be performed
to configure the node, specific instructions are included.

Chapter 2 23

Configuration management
ts_config

ts_config automatically updates the display when it detects either a
change in the configuration status of any node or a newly detected node.
The node display is not updated while an Action is being processed or
while the user is entering information into an Action dialog.

The upper right corner of the ts_config window indicates whether a
node has been selected.

The ts_config window title includes in parenthesis the name of the
effective user ID running ts_config, either root or sppuser along with
the host name of the SSP.

The ts_config display shows the configuration status of the nodes.
Table 5 shows the possible status values.

Table 5 ts_config status values

Configuration
Status

Description Action Required

Upgrade JTAG
firmware

The version of JTAG firmware
running on the SCUB does not
support the capabilities
required to complete the node
configuration process.

Select the node and follow the
instructions given at the bottom of
the ts_config window. ts_config
guides the operator through the
JTAG firmware upgrade procedure.

Not Configured ts_config has detected the
node on the Diagnostic LAN and
the JTAG firmware is capable of
supporting the node
configuration activity and the
node needs to be configured.

Select the node and follow the
instructions given at the bottom of
the ts_config window.
ts_config guide the operator
through the node configuration
procedure described later in this
document.

24 Chapter 2

Configuration management
ts_config

Configuration procedures
The following procedures provide additional details about each
configuration action and are intended as a reference. ts_config
automatically guides the user through the appropriate procedure when a
node is selected.

Upgrade JTAG firmware

NOTE If the node shows “Not Configured,” do not perform this procedure.
Perform the following procedure only when the status shows “Upgrade
JTAG firmware.”

Step 1. Select the node from the list in the display panel. For example, clicking
on node 0 in the list highlights that line as shown in Figure 6.

Active The node is configured and
answering requests on the
Diagnostic LAN.

None required. This is the desired
status.

Inactive The SSP node configuration file
contains information about the
specified node, but the node is
not responding to requests on
the Diagnostic LAN.This status
is also shown if a node was
configured and then removed
from the SSP LAN without
being deconfigured.

Power-up the node and/or check for
a LAN connection problem. If the
node information shown is for a
node that has been removed, select
the node then select “Actions,”
“Deconfigure Node,” and click “Yes.”

Node Id
changed

The node is configured and
answering requests on the
diagnostic LAN, but the node ID
currently reported by the node
does not match the SSP
configuration information.

Select the node to obtain additional
information. If the node COP
information was changed to a
different node ID and the new node
ID is correct, select “Actions,”
“Configure Node,” then click
“Configure.” The SSP configuration
information is updated using the
new node ID.

Configuration
Status

Description Action Required

Chapter 2 25

Configuration management
ts_config

 Figure 6 ts_config showing node 0 highlighted

Notice that after the node has been highlighted that ts_config displays
information concerning the node. In this step, it tells the user what
action to take next, “This node’s JTAG firmware must be upgraded.
Select “Actions,” “Upgrade JTAG firmware” and “Yes” to upgrade.”

Step 2. Select “Actions” to drop the pop-down menu and then click “Upgrade
JTAG firmware,” as shown in Figure 7.

 Figure 7 ts_config “Upgrade JTAG firmware” selection.

Step 3. A message panel appears as the one shown in Figure 8. Read the
message. If this is the desired action, click “Yes” to begin the upgrade.

26 Chapter 2

Configuration management
ts_config

 Figure 8 Upgrade JTAG firmware confirmation panel

Step 4. After the firmware is loaded a panel appears as the one shown in Figure
9. Click “OK” and then power-cycle the node to activate the new
firmware.

 Figure 9 ts_config power-cycle panel

When the node is powered up, the “Configuration Status” should change
to “Not Configured.”

Configure a Node

Step 1. Select the desired node from the list of available nodes. When the node is
selected, the appropriate line is highlighted as shown in Figure 10.
Notice the bottom of the display indicates the Node 0 is not configured
and provides the steps necessary to configure the node.

Chapter 2 27

Configuration management
ts_config

 Figure 10 ts_config indicating Node 0 as not configured

Step 2. Select “Actions” and then click “Configure Node,” as shown in Figure 11.

 Figure 11 ts_config “Configure Node” selection.

After invoking ts_config to configure the node, a node configuration
panel appears as the one in Figure 12.

28 Chapter 2

Configuration management
ts_config

 Figure 12 ts_config node configuration panel

Step 3. Enter a name for the V2500/V2600 System. The SSP uses this name as
the “Complex Name” and to generate the IP host names of the Diagnostic
and OBP LAN interfaces. Select a short name that SSP users can easily
relate to the associated system (for example: hw2a, swtest, etc.).

Step 4. Select an appropriate serial connection for the V2500/V2600 console from
the pop-down option menu in the node configuration panel.

ts_config automatically assigns the first unused serial port. If the
terminal mux has been configured, the terminal mux ports are included
in the list of available serial connections.

The IP address information for the Diagnostic interface is provided. The
ts_config utility automatically changes the IP address of the
diagnostic LAN interface to prevent a duplicate when other nodes are
added to this SSP configuration.

ts_config automatically updates the local /etc/hosts file with the
names and addresses of the Diagnostic and OBP LAN interfaces.

Step 5. Click “Configure.”

This updates several SSP files. The node configuration confirmation
panel appears as the one in Figure 13.

Chapter 2 29

Configuration management
ts_config

 Figure 13 ts_config restart workspace manager panel.

Step 6. Read the panel and click “OK.” When the configuration process is
complete, the “Configuration Status” of the node changes to “Active,” as
shown in Figure 14.

 Figure 14 ts_config indicating Node 0 is configured

Step 7. Restart the Workspace Manager: Click the right-mouse button on the
desktop background to activate the root menu. Select the “Restart” or
“Restart Workspace Manager” option, then “OK” to activate the new
desktop menu.

NOTE If adding multiple nodes to the SSP, wait until the final node is added
before restarting the Workspace Manager.

30 Chapter 2

Configuration management
ts_config

Configure the scub_ip address

Step 1. Select the desired node from the list of available nodes.

Step 2. In the ts_config display panel, select “Actions” and then “Configure
‘scub_ip’ address,” as shown in Figure 15.

 Figure 15 ts_config “Configure ‘scub_ip’ address” selection

ts_config checks the scub_ip address stored in NVRAM on the SCUB
in the node. This would initially be the default address set at the factory.

If the scub_ip address is correct, the panel shown in Figure 16 is
displayed and no action is required. If the node is not detected and
scanned by ccmd, ts_config may ask you to try again later. The ccmd
detection scan process should take less than a minute.

 Figure 16 ts_config “SCUB OK” panel

Step 3. If prompted by ts_config (as indicated by the panel in Figure 17), click
“Yes” to correctly set the scub_ip address.

Chapter 2 31

Configuration management
ts_config

 Figure 17 ts_config scub_ip address configuration confirmation

Step 4. A panel as the shown in Figure 18 appears confirming that the scub_ip
address is set. Click OK.

 Figure 18 ts_config scub_ip address set confirmation panel

Initiate a node reset to activate the new scub_ip address.

Reset the Node

Step 1. Select the desired node from the list of available nodes.

Step 2. Select “Actions,” then “Reset Node.” This is indicated in Figure 19.

32 Chapter 2

Configuration management
ts_config

 Figure 19 ts_config “Reset Node” selection

A panel as the one shown in Figure 20 appears.

 Figure 20 ts_config node reset panel

Step 3. In the Node Reset panel, select the desired “Reset Level” and “Boot
Options,” then click Reset.”

Chapter 2 33

Configuration management
ts_config

Deconfigure a Node
Deconfiguring a node removes the selected node from the SSP
configuration. The SSP will no longer monitor the environmental and
hard-error status of this node. Console access to the node is also be
disabled.

Step 1. Select the desired node from the list of available nodes.

Step 2. Select “Actions,” then “Deconfigure Node,” then click “Yes.”

Add/Configure the Terminal Mux

To add or reconfigure the terminal mux, perform the following procedure.

Step 1. In the ts_config display, select “Actions,” then “Configure Terminal
Mux.”

Select “Add/Configure Terminal Mux.” This is indicated in Figure 21.

 Figure 21 ts_config “Add/Configure Terminal Mux” selection

Step 2. Connect a serial cable from serial port 2 on the SSP to port 1 on the
terminal mux.

Step 3. A panel shown in Figure 22 display the IP address.

34 Chapter 2

Configuration management
ts_config

 Figure 22 Terminal mux IP address panel

Remove terminal mux
ts_config does not remove the terminal mux if any node consoles are
assigned to terminal mux ports.

Step 1. Select “Actions,” then “Configure Terminal Mux.”

Step 2. Select “Remove Terminal Mux,” then click “Yes.”

Console sessions
ts_config may also start console sessions by selecting the desired
node(s) and then selecting the “Start Console Session” action as shown in
Figure 23. Figure 24 shows the started console sessions.

Chapter 2 35

Configuration management
ts_config

 Figure 23 “Start Console Session” selection

 Figure 24 Started console sessions

36 Chapter 2

Configuration management
ts_config

V2500/V2600 SCA (multinode) configuration
ts_config can also configure a V2500/V2600 SCA system. An example
to follow describes how. The example assumes that there are two active
single-node complexes. After the system has rebooted to OBP, node 0
becomes the console for the SCA complex.

To configure the two-node system in the example, start ts_config as
described in “Starting ts_config” on page 21. Once ts_config has
started, a window like that shown in Figure 25 is displayed.

 Figure 25 SSP supporting two single-node complexes

The following procedure configures the two-node SCA system in the
example.

Step 1. Select the nodes by clicking anywhere in the information display for each
node. As the nodes are selected, they become highlighted.

Step 2. Select “Action” and then “Configure Multinode complex” as shown in
Figure 26.

Chapter 2 37

Configuration management
ts_config

 Figure 26 ts_config Configure Multinode complex selection

Step 3. When “Configure Multinode complex” is selected, a configuration dialog
appears as shown in Figure 37.

 Figure 27 Configure Multinode Complex dialog window

38 Chapter 2

Configuration management
ts_config

Step 4. Enter the required fields into the Configure Multinode Complex dialog
window.

• V-Class Complex Name—Current complex name of either node or a
new complex name.

• Complex Serial Number—Unique serial number of the complex. This
is not required if the nodes have the same serial numbers.

• Complex Key—Number required to enter the Complex Serial
Number.

NOTE If all of the SCA system complex serial numbers are the same, no
complex key is required.

Step 5. Select the desired node IDs from the “New Node ID” drop-down lists.

Step 6. If the console connection must be changed, select appropriate connection
from the “Console Connection” drop-down list.

Step 7. In the “Hypernode bitmask” section select “POST will determine
bitmask.”

Step 8. If necessary, select the desired CTI cache size from the “CTI cache size”
drop-down list.

Step 9. If necessary, select the node-local memory size from the “Node local size”
pull-down list.

NOTE The default settings for CTI cache and node-local memory are
recommended.

Chapter 2 39

Configuration management
ts_config

 Figure 28 Configure Multinode Complex dialog window with appropriate
values

Step 10. Click the “Configure” button to start the configuration. A message box
appears indicating that the configuration has started.

 Figure 29 Configuration started information box

The following activities occur during the configuration process:

• SSP files are updated based on the new complex and node names.

• Essential console server processes are started, and the now-obsolete
server processes are halted.

• New node information is written to the COP chip in each node.

40 Chapter 2

Configuration management
ts_config

This information includes:

• Node ID

• Complex serial number (if it has been modified)

• Requested or auto-generated software identifier

• Configuration Manager Daemon, ccmd, is notified of the new
configuration.

• The shared-memory database of node information is updated.

• Multinode configuration parameters are written to NVRAM in each
node. These include:

• Hypernode bitmask

• X- and Y-ring information

• Node count

• CTI cache size

• Node-local memory size

• The boot vector of each node is set to OBP and each node is reset.

When the configuration process is complete, ts_config shows the new
multinode complex, as in Figure 30. The restart process activates the
new SSP root menu which includes customized menus for each complex.
The Workspace Manager must be restarted or else the root menu will be
outdated (the rest of the configuration process is complete).

Chapter 2 41

Configuration management
ts_config

 Figure 30 ts_config showing newly configured complexes

When remotely running ts_config, the Restart Workspace Manager
step cannot be performed, because it is the SSP Workspace Manager that
needs to be restarted. The Workspace Manager can be restarted at any
time by clicking on the desktop background and selecting Restart
Workspace Manager, then OK.

Any of the configurable parameters on the Multinode Configuration
dialog may be changed by selecting each node and choosing the
“Configure Multinode complex” action. Set the desired options and click
Configure. During a reconfiguration, several of the required fields in the
Multinode Configuration dialog are filled in by ts_config.

V2500/V2600 split SCA configuration
ts_config also provides a “Split Multinode complex” action that takes
an SCA complex and logically splits it into single node systems. Each
node becomes Node 0 in a new complex.

The following procedure allows the user to split the SCA system:

Step 1. In the ts_config window, select the desired nodes.

Step 2. Select every node in the desired complex, then “Actions,” and then “Split
Multinode complex.” Figure 32 shows the ts_config Split Multinode
complex panel.

42 Chapter 2

Configuration management
ts_config

 Figure 31 ts_config Split Multinode complex operation

 Figure 32 ts_config Split Multinode complex panel

Step 3. Enter the complex names for each node. New complex serial numbers
may be assigned. Each node becomes node 0 in a new complex. Figure 33
shows the Split Multinode panel filled in. Click the Split Complex button
to initiate the configuration process.

Chapter 2 43

Configuration management
ts_config

 Figure 33 ts_config Split Multinode complex panel filled in

The message shown in Figure 34 appears indicating the configuration is
taking place.

 Figure 34 Split Multinode confirmation panel

Figure 35 shows the main ts_config display after the split multinode
operation has completed. It shows the resulting configuration: two single
node complexes (two node 0s) with names assigned in the prior step.

 Figure 35 ts_config Split Multinode operation complete

44 Chapter 2

Configuration management
ts_config

ts_config files
ts_config either reads or maintains the following SSP configuration
files:

/etc/hosts The standard system hosts file, includes entries for the
cabinet related IP addresses.

/etc/services
Service definitions for the console interface.

/etc/
inetd.conf Contains entries for starting console related processes

/spp/data/
nodes.conf

Contains entries which define the complexes (either
single cabinet or multi-cabinet) managed by the SSP.
This file is maintained by the Configure Node Action of
ts_config, but other commands can also update this
file: delete_node, configure_node, and
split_multinode.

/spp/data/
conserver.cf

Connection definitions for the console interface.

/spp/data/
consoles.conf

Console name to ttylink number resolution. This file is
maintained by the Configure Mux Action of
ts_config.

/spp/data/
<complex_name>

For each newly configured complex, there is a complex-
specific directory that contains complex-specific files,
such as event and console logs. ts_config generates
each <complex_name> during configuration.

The nodes.conf file contains most of the configuration management
information. It defines the relationship between complex names,
cabinets (nodes) within that complex and the associated host names and
console port connections.

Each node has an entry in the nodes.conf file as follows:

Chapter 2 45

Configuration management
ts_config

NODE Complex Node ID JTAG-hostname OBP-hostname SSP-hostname Console-port

The variables of the entry are defined as follows:

NODE—Keyword designating a cabinet (node) entry.

Complex—Name to which the node (cabinet) is associated.

In a multi-cabinet complex all the cabinets comprise a single system
(complex) and are managed by a single console (the console on cabinet 0).
Each cabinet, however, has its own console that can report diagnostic
information, and there is still a console configuration entry for each
cabinet. These consoles, however, are not normally accessed.

Node ID—The identification of the V-Class node. This number can be 0,
2, 4, or 6.

Jtag-hostname—Host name used by the SSP to communicate with the
JTAG firmware on the associated node. JTAG IP addresses are
15.99.111.116 through 15.99.111.131.

Obp-hostname—Host name used for OBP communication (not normally
referenced while administering the complex). OBP IP addresses are
15.99.111.166 through 15.99.111.181.

SSP-hostname—Local host name of the private/diagnostic LAN. The
default host name for this interface is tsdart-d.

Console-port—Name of the physical connection to the node RS-232
console port. The port name is linked to a ttylink service entry via the file
/spp/data/consoles.conf.

The get_node_info program extracts information from the nodes.conf
file.

IMPORTANT Most SSP configuration is carried out by ts_config. Sometimes
problems are caused by manually editing the files maintained by
ts_config, resulting in it not be able to properly parse the files on its
own.

The ts.install script is designed not to run after initial installation to
prevent inadvertent removal of changes made to the configuration files
by ts_config. It can be forced to run, however, in order to put all the
configuration files back to factory defaults. To rerun ts.install,
execute the following command:

/spp/scripts/inst/ts.install

46 Chapter 2

Configuration management
SSP-to-system communications

SSP-to-system communications
Figure 36 depicts the V-Class server to SSP communications using
HP-UX.

 Figure 36 SSP-to-system communications

A layer of firmware between HP-UX and OBP (Open Boot PROM) called
spp_pdc allows the HP-UX kernel to communicate with OBP. spp_pdc
is platform-dependent code and runs on top of OBP providing access to
the devices and OBP configuration properties.

ethernet

DUART

HPUX
ethernet

Scan

console

NFS-FWCP

modem
remote diagnostic

RS-232

ccmd
event_logger
hard_logger

sppconsole
ttylink

LCD

OBP

POST
/test controller

console messages/LCD

Global LANglobal ethernet

Private LANprivate ethernet

RS-232

JTAG FW

ethernet

console messages

memlogsyslog

Cabinet

pciromldr

SSP

PCI

console
spp_pdcmessages

consolelogx

JTAG

ccmd

Test AUI

Core AUI

RS-232A

fwcp/nfs

Chapter 2 47

Configuration management
SSP-to-system communications

LAN communications
There are two ethernet ports located on the SCUB as shown in the
diagram in the upper-left side of the node (dotted line) in Figure 36 on
page 46. These comprise the “private” or diagnostic LAN. The JTAG port
is used for scanning, and the NFS-FWCP port is used for downloading
system firmware via nfs using the fwcp utility, via tftp using the
pdcfl utility, downloading disk firmware using the dfdutil utility
(dfdutil uses tftp for reading peripheral firmware), and loading
Symbios FORTH code using the pciromldr utility. For more
information on dfdutil, tftp, and pciromldr, see the appropriate
man pages.

The configuration daemon, ccmd, which is located on the SSP obtains
system configuration information over the private LAN from the JTAG
port. It builds a configuration information database on the SSP. The
board names and revisions, the device names and revisions, and the
start-up information generated by POST are all read and stored in
memory for use by other diagnostic tools.

IMPORTANT Both the B180L and the 712 workstations must have two ethernet
connections: one for the private LAN and one for the global LAN. These
ports are different on each model of workstation. It is important that the
installer connect the LAN cables to the correct connector on the SSP.

The SSP can be placed on the customers Local Area Network using the
SSP’s global ethernet.

SSP host name and IP addresses
The SSP software installation process assigns the correct IP address to
the appropriate LAN device.

The SCUB IP address 15.99.111.116 is the first SCUB IP address
available on the SSP. If more nodes are added, they are assigned
15.99.111.117, 15.99.111.118, and so on. ts_config keeps track of which
addresses are assigned.

The SCUB IP host name is “complexname-000n,” where n is the node ID.
The SSP supports multiple complexes (that is, multiple node 0s).

48 Chapter 2

Configuration management
SSP-to-system communications

Serial communications
The DUART port on the SCUB provides an RS232 serial link to the SSP.
Through this port HP-UX, OBP, POST (Power-On Self Test) and the Test
Controller send console messages. The SSP processes these messages
using the sppconsole and ttylink utilities and the consolelogx log
file. POST and OBP also send system status to the LCD connected to the
DUART. For more information on sppconsole, ttylink, and
consolelogx, see the appropriate man pages.

NOTE The second RS-232 port on the workstations are unused and not enabled
at this time.

Chapter 2 49

Configuration management
ccmd

ccmd
ccmd (Complex Configuration Management Daemon) is a daemon that
maintains a database of information about the V2500/V2600 hardware.
ccmd also monitors the system and reports any significant changes in
system status. It supports multiple nodes, multiple complexes and nodes
that have the same node number.

There are two types of related information in the database: node
information (node numbers, IP addresses and scan data) and
configuration data which is initialized by POST. The node information is
scanned from the hardware and processed with the aid of data files at
 /spp/data. The POST configuration data is required so that certain
scan based utilities can emulate various hardware functions.

ccmd periodically sends out a broadcast to determine what nodes are
available. If ccmd can not talk to a node that it previously reached, it
sends a response to the console and the log. If it establishes or re-
establishes contact, or if a node powers up, ccmd reads hardware
information from the node and interrogates it through scan to determine
the node configuration. From this data, a complete database is built on
the SSP that will be used for all scan based diagnostics.

Once running, ccmd checks for power-up, power-down, reset, error, and
environmental conditions on regular intervals. If at any time ccmd
detects a change in the configuration, it changes the database, updates
the /spp/data/complex.cfg file, sets up a directory in /spp/data for
each complex and initializes a node_#.pwr file for each node in the
complex specific subdirectory.

If ccmd detects an error condition, it invokes an error analysis tool
(hard_logger) that logs and diagnoses error conditions. After an error
is investigated, ccmd reboots the node or complex associated with the
error. The reboot operation can be avoided with the use of the
autoreset [complex] on|off|chk utility in /spp/scripts.

ccmd is listed in /etc/inittab as a process that should run continuously. It
may be started manually, but since it kills any previous copies at start-
up, diagnostic processes that may be running will be orphaned. Only one
copy of ccmd may run on a SSP.

50 Chapter 2

Configuration management
ccmd

If started with no options, ccmd disassociates itself from the terminal or
window where it was started. It instead reports to the console window
and the file /spp/data/ccmd_log.

If ccmd is sent a SIGHUP, it regenerates the database.

All scan-based operations require ccmd. If POST is unable to run, then
ccmd is not able to read configuration data and some system information
is not accessible.

ccmd works in co-operation with most utilities to share a common
ethernet port and Diagnostic (DART) bus. In general, the scan data is
sent via UDP. The DART bus should be separate from any general
purpose ethernet bus. If the DART bus is improperly set-up, ccmd cannot
run properly.

Since ccmd can become corrupted by bad data, it may be necessary to kill
the ccmd process to refresh the SSPs configuration image. Killing the
ccmd process is not always enough. If the “heart beat” LED from the
SCUB is not functioning then ccmd is unable to communicate with the
system. A ping command to the SCUB will not be successful either. In
this case, the system or node must be powered down to reset the SCUB
and re-establish communication with the SSP.

Chapter 2 51

Configuration management
xconfig

xconfig
xconfig is the graphical tool that can also modify the parameters
initialized by POST to reconfigure a node.

The graphical interface allows the user to see the configuration state.
Also the names are consistent with the hardware names, since individual
configuration parameters are hidden to the user. The drawback of
xconfig is that it can not be used as a part of script-based tests, nor can
it be used for remote debug.

xconfig is started from a shell. Information on node 0 is read and
interpreted to form the starting X-windows display shown in Figure 37.

The xconfig window appears on the system indicated by the
environmental variable $DISPLAY. This may be overridden, however, by
using the following command:

% xconfig -display system_name:0.0

The xconfig window has two display views: one shows each component as
a physical location in the server, the other shows them as logical names.
Figure 37 and Figure 38 show the window in each view, respectively. To
switch between views, click on the Help button in menu bar and then
click the Change names option. See “Menu bar” on page 54.

52 Chapter 2

Configuration management
xconfig

 Figure 37 xconfig window—physical location names

Chapter 2 53

Configuration management
xconfig

 Figure 38 xconfig window—logical names

As buttons are clicked, the item selected changes state and color. There is
a legend on the screen to explain the color and status. The change is
recorded in the SSP’s image of the node.

When the user is satisfied with the new configuration, it should be copied
back into the node, and the node should be reset to enable the changes.

54 Chapter 2

Configuration management
xconfig

The main xconfig window has three sections:

• Menu bar—Provides additional capability and functions.

• Node configuration map—Provides the status of the node.

• Node control panel—Provides the capability to select a node and
control the way data flows to it.

Menu bar
The menu bar appears at the top of the xconfig main window. It has
four menus that provide additional features:

• File menu—Displays the file and exit options.

• Memory menu—Displays the main memory and CTI cache memory
options.

• Error Enable menu—Displays the device menu options for error
enabling and configuration.

• Help menu—Displays the help and about options.

The menu bar is shown in Figure 39.

 Figure 39 xconfig window menu bar

The File menu provides the capability to save and restore node images
and to exit xconfig.

The Memory menu provides the capability to enable or disable memory
at the memory DIMM level by the total memory size and to change the
network cache size on a multinode complex.

The Error Enable menu provides the capability to change a device’s
response to an error condition. This is normally only used for
troubleshooting.

The Help menu provides a help box that acts as online documentation
and also contains program revision information.

Chapter 2 55

Configuration management
xconfig

Node configuration map
The node configuration map is a representation of the left and right side
views of a node as shown in Figure 40.

 Figure 40 xconfig window node configuration map

56 Chapter 2

Configuration management
xconfig

The button boxes are positioned to represent the actual boards as viewed
from the left and right sides. Each of the configurable components of the
node is in the display. The buttons are used as follows:

• Green button—Indicates that the component is present and enabled.

• Red button—Indicates that the component is software disabled in the
system.

• White button—Indicates that it is not possible to determine what the
status of the component would be if POST were to be started.

• Blue box—Indicates that the component is either not present or fails
the power-on self tests.

• Brown button—Indicates that POST had to hardware deconfigure
this component in order to properly execute.

• Grey button—Indicates a hardware component that did not properly
initialize.

The colors are shown in the legend box of the node control panel.

Components can change from enabled to disabled or disabled to
unknown by clicking on the appropriate button with the left mouse
button.

A multinode system requires an additional component on a memory
board to enable the scalable coherent memory interface. This component
can be viewed by right clicking the on the memory board button. The
right mouse button toggles the memory board display between the
memory board and the SCI device

Node control panel
The node control panel allows the user to select a node, select the stop
clocks on an error function, select the boot parameters for a node and
direct data flow between the node and the xconfig utility. It is shown in
Figure 41.

Chapter 2 57

Configuration management
xconfig

 Figure 41 xconfig window node control panel

The node number is shown in the node box. A new number can be
selected by clicking on the node box and selecting the node from the pull-
down menu. A new complex can be selected by clicking on the complex
box and selecting it from the pull-down. A node IP address is displayed
along with the node number and complex.

58 Chapter 2

Configuration management
xconfig

When a new node is selected and available, its data is automatically read
and the node configuration map updated. The data image is kept on the
SSP until it is rebuilt on the node using the Replace button. This is
similar to the replace command on sppdsh.

Even though data can be rebuilt on a node, it does not become active
until POST runs again and reconfigures the system. The Reset or Reset
All buttons can be used to restart POST on one or all nodes of a system.
A multinode system requires a reset all to properly function.

A Retrieve button is available on the node control panel to get a fresh
copy of the parameters settings in the system. Clicking this button
overwrites the setting local to the SSP and xconfig.

The Stop-on-hard button is typically used to assist in fault isolation. It
stops all system clocks shortly after an error occurs. Only scan-based
operations are available once system clocks have stopped.

The last group of buttons controls what happens after POST completes.
The node can become idle or boot OBP, the test controller, or spsdv. The
test controller and spsdv are additional diagnostic modes.

Chapter 2 59

Configuration management
Configuration utilities

Configuration utilities
V2500/V2600 diagnostics provides utilities that assist the user with
configuration management.

autoreset
autoreset allows the user to specify whether ccmd should
automatically reset a complex after a hard error and after the hard
logger error analysis software has run. autoreset occurs if a
ccmd_reset file does not exist in the complex-specific directories

Arguments to autoreset arguments include <complex_name> on and
<complex_name> off or chk.

 The output of the chk option for a complex name of hw2a looks like:

Autoreset for hw2a is enabled.

or

Autoreset for hw2a is disabled.

NOTE autoreset determines the behavior of ccmd when it encounters an error
condition. ccmd makes its decision whether to reset a complex
immediately after running hard_logger. Enabling autoreset after
hard_logger has run does not reset the complex.

est_config
est_config is a utility that builds the node and complex descriptions
used by est. est_config reads support files at
/spp/data/DB_RING_FILE, reads the electronic board identifier (COP
chip) and scans to completely describe the node or complex. It also uses
the hardware database created by ccmd. The data retrieved is organized
and sorted into an appropriate node configuration file in the /spp/data/
<complex name> directory.

An optional configuration directory can be specified using the -p
argument. est_config works across all nodes unless a specific node or
complex is requested with the -n option.

60 Chapter 2

Configuration management
Configuration utilities

NOTE If there is a node_#.pwr file that is older than the node_#.cfg file, existing
node configuration files do not need to be updated.

report_cfg
This utility generates a report summarizing the configuration of all
nodes/complexes specified on the command line. The format of
report_cfg is as follows:

report_cfg [<node id|complex> [<node id|complex> ...]]

node id may be a node number, IP name, or “all.” If no node ID is
specified, the utility defaults to all nodes in the current complex.

One or more of the options in Table 6 must be specified:

Table 6 report_cfg options

If the report_cfg tool detects any nodes of complexes that contain SCA
DIMMS and some memory boards that are not populated with STACS, it
generates a report.

Example configuration report:
The system inventory has determined that you’ll need to order 8 SCA Upgrade Kits
in order to connect this cabinet with other SCA cabinets. These upgrade kits are
available by additionally ordering opt. 010 of the required SCA HyperLink product
(A5518A or A5519A). You may also have to order additional memory DIMMs, memory
boards and or processor boards to meet the minimum requirements for a SCA
configuration. Refer to the HP 9000 V-Class Ordering Guide for details.

-d Show all details

-s Show summary only

-a Show summary and details (same as -d and -s)

-A Show ASIC detail

-i Show I/O detail

-m Show memory detail

-p Show processor detail

Chapter 2 61

Configuration management
Configuration utilities

Effects of hardware and software deconfiguration
report_cfg counts all processors, STACs, SMACs, SAGAs and ERACs
if POST has not marked them as empty. This results in ASICs and
processors being included in the summary count even though they may
have failed or have been deconfigured by software. This is necessary
because POST deconfigures STACs in a single node configuration. To
allow the tool to count these ASICs, it must report all ASICs that are
installed, not just those enabled by POST.

report_cfg includes all DIMMs that POST has not marked as empty. If
the user deconfigures a SMAC with software or the SMAC fails the
POST selftest, POST marks the DIMMs on that SMAC as empty. If
POST has written valid size information into the BCM for a DIMM,
report_cfg reports the physical size reported by POST.

For example, if a node has both 80- and 88-bit DIMMs, POST
reconfigures the 88-bit DIMMs to behave as 80-bit DIMMs, and the
system logically behaves as if it has all 80-bit DIMMs. report_cfg,
however, distinguishes (using the physical attribute in the BCM)
between the 80- and 88-bit DIMMs in its reports.

Another example would be a system that contains 16 GBytes of memory
but half of the DIMMs are deconfigured by software. report_cfg still
reports that the system contains 16 Gbytes of memory.

report_cfg summary report
To obtain a system summary report, use the -s option for the command.
The following is a sample summary report by report_cfg:

report_cfg -s

 Complex name Complex serial number Node ID
 ------------------ --------------------- -------
 hw4a USR1234567 0
 hw4a USR1234567 2

 Cabinets: 2
 Processors: 30
 Processor boards: 30 (30 singles, 0 duals)
 Memory boards: 16
 TAC chips: 16
Enabled Memory (Mb): 8192
 88-bit 128Mbyte: 112

62 Chapter 2

Configuration management
Configuration utilities

report_cfg ASIC report
To obtain a report on the ASICs in a complex, use the -A option. The
following is a sample ASIC report by report_cfg:

report_cfg -A

 Complex |Node#| MIB COP | SCUB COP
====================+=====+=======================+=======================
 hw2a 0 A5074-60002 00 a 3845 A5074-60003 00 b 3830
 hw2a 2 A5074-60002 00 a 3840 A5074-60003 00 b 00XA

 +----- ASIC revisions ------+
 Complex |Node| Slot | PAC | MAC | TAC | RAC |
====================+====+=======+======+======+======+======+
 hw2a 0 0 2 2 1 2
 hw2a 0 1 2 2 1 2
 hw2a 0 2 2 2 1 2
 hw2a 0 3 2 2 1 2
 hw2a 0 4 2 2 1
 hw2a 0 5 2 2 1
 hw2a 0 6 2 2 1
 hw2a 0 7 2 2 1
 hw2a 2 0 2 2 1 2
 hw2a 2 1 2 2 1 2
 hw2a 2 2 2 2 1 2
 hw2a 2 3 2 2 1 2
 hw2a 2 4 2 2 1
 hw2a 2 5 2 2 1
 hw2a 2 6 2 2 1
 hw2a 2 7 2 2 1

report_cfg I/O report
To obtain an I/O report, use the -i option. The following is a sample I/O
report by report_cfg:

report_cfg -i

 Complex |Node#| MIB COP | SCUB COP
====================+=====+=======================+=======================
 hw2a 0 A5074-60002 00 a 3845 A5074-60003 00 b 3830
 hw2a 2 A5074-60002 00 a 3840 A5074-60003 00 b 00XA

 Complex |Node#|I/O board | COP
====================+=====+==========+=======================
 hw2a 0 IORF_B A5080-60001 00 a 3821
 hw2a 0 IORF_A A5080-60001 00 a 3821
 hw2a 2 IOLF_B A5080-60001 00 a 3821
 hw2a 2 IOLF_A A5080-60001 00 a 3821

Chapter 2 63

Configuration management
Configuration utilities

report_cfg memory report
To obtain a report on the memory in a complex, use the -m option. The
following is a sample memory report by report_cfg:

report_cfg -m

 Complex |Node#| MIB COP | SCUB COP
====================+=====+=======================+=======================
 hw2a 0 A5074-60002 00 a 3845 A5074-60003 00 b 3830
 hw2a 2 A5074-60002 00 a 3840 A5074-60003 00 b 00XA

 | 80-bit | 88-bit
 | |
 | | 1 | 2 | | 1 | 2
 |Mem. | | 3 | 2 | 5 | 3 | 2 | 5
Complex |Node|Board| COP | 2 | 8 | 6 | 2 | 8 | 6
============+====+=====+=======================+===+===+===+===+===+====
 hw4a 0 MB0L A5078-60003 01 a 00XB 8
 hw4a 0 MB1L A5078-60003 01 a 00XB 8
 hw4a 0 MB2R A5078-60003 01 a 00X2 8
 hw4a 0 MB3R A5078-60003 01 a 00X2 8
 hw4a 0 MB4L A5078-60003 01 a 00XA 8
 hw4a 0 MB5L A5078-60003 01 a 00X2 8
 hw4a 0 MB6R A5078-60003 01 a 00XA 8
 hw4a 0 MB7R A5078-60003 01 a 00X2 8
 hw4a 2 MB0L A5078-60003 01 a 00XA 8
 hw4a 2 MB1L A5078-60003 01 a 3842 8
 hw4a 2 MB2R A5078-60003 01 a 00XA 8
 hw4a 2 MB3R A5078-60003 01 a 00XB 8
 hw4a 2 MB4L A5078-60003 01 a 3843 8
 hw4a 2 MB5L A5078-60003 01 a 00XD 8
 hw4a 2 MB6R A5078-60003 01 a 00XB 8
 hw4a 2 MB7R A5078-60003 01 a 00XD 8

64 Chapter 2

Configuration management
Configuration utilities

report_cfg processor report
To obtain a report on the processor in a complex, use the -p option. The
following is a sample processor report by report_cfg:

report_cfg -p

 Complex |Node#| MIB COP | SCUB COP
====================+=====+=======================+=======================
 hw2a 0 A5074-60002 00 a 3845 A5074-60003 00 b 3830
 hw2a 2 A5074-60002 00 a 3840 A5074-60003 00 b 00XA

 Complex |Node#|Processor | COP | CPU rev
====================+=====+==========+=======================+========
 hw2a 0 PB0L_A A5077-60005 00 a 00XA 2.0
 hw2a 0 PB1R_A A5492-60001 00 b 00XC 2.3
 hw2a 0 PB1L_A A5491-60001 00 a 00XA 2.0
 hw2a 0 PB4L_A A5492-60001 00 b 00XB 3.0
 hw2a 0 PB5L_A A5492-60001 00 a 00XB 2.0
 hw2a 0 PB0L_B A5077-60005 00 a 00XA 2.0
 hw2a 0 PB1L_B A5491-60001 00 a 00XA 2.0
 hw2a 0 PB4L_B A5492-60001 00 b 00XB 2.0
 hw2a 0 PB5L_B A5492-60001 00 a 00XB 2.0

 Complex |Node#|Processor | COP | CPU rev
====================+=====+==========+=======================+========

 hw2a 2 PB2L_A A5491-60001 00 a 00XA 2.0
 hw2a 2 PB2R_A A5492-60001 00 a 00XA 2.0
 hw2a 2 PB3R_A A5491-60001 00 a 00XA 2.0
 hw2a 2 PB4L_A A5492-60001 00 b 00XC 2.0
 hw2a 2 PB5L_A A5491-60001 00 a 00XA 2.0
 hw2a 2 PB4L_B A5492-60001 00 b 00XC 2.3

xsecure
xsecure is an application that helps make a V2500/V2600 class SSP
secure from external sources. This tool disables modem and LAN activity
to provide an extra layer of security for the V2500/V2600 system.
xsecure may be run as a command line tool or an windows-based
application.

In secure mode, all network LANs other than the tsdart bus are disabled
and the optional modem on the second serial port will be disabled. When
in normal mode all networks and modems are re-enabled.

Chapter 2 65

Configuration management
Configuration utilities

If the command line [-on | -off | -check] options are used,
xsecure does not use the GUI interface. These options allow the user to
turn the secure mode on, off, or allow the user to check the secure mode
status.

A simple button with a red or green secure mode indicator provides the
user with secure mode status information. The red indicator shows that
the secure mode process has begun. The label near the red button will
inform the user when the SSP is secure. A green indicator and the
appropriate label shows that the network is available and the SSP may
be accessed through the ethernet port.

In order for xsecure to work properly the SSP, console cables, terminal
mux and modems must be configured in specific ways. The SSP JTAG
connections, OBP connections and an optional terminal mux must all be
connected to the Diagnostic LAN and identified in the /etc/hosts file as
tsdart-d. The sppconsole serial cable must be connected to serial port 1
and to node 0. An optional modem may be connected to serial port 2.

66 Chapter 2

Configuration management
Configuration utilities

Chapter 3 67

3 Power-On Self Test

POST is the Power On Self Test firmware for the V-Class platform.
POST provides processor and system hardware initialization as well as
providing basic processor selftest and utilities board SRAM pattern test
capability. This chapter describes how POST initializes a node and
handles power up errors.

68 Chapter 3

Power-On Self Test
Overview

Overview
Upon power up, all processors and hardware must be initialized before
the node proceeds with booting. POST begins executing and brings up
the node from an indeterminate state and then calls OBP.

None of the POST modules can be directly controlled via a user interface.
Program control is provided by a set of configuration parameters
(processing flags and variable definitions) stored in NVRAM by OBP,
do_reset, or xconfig.

The error reporting modules display error codes for all fatal errors that
occur during the POST execution. Any errors that can be recovered from,
are reported to OBP. POST status is reflected on the LCD display.

POST performs the following tasks:

• Initializes and conditionally performs cache tests on each processor in
the node

• Validates all shared data structures within the NVRAM.

• Initializes the core logic required to start OBP execution

• Determines node configuration

• Initializes all ASICs

• Initializes main memory

• Initializes multinode hardware

• Synchronizes nodes

• Sets up CTI cache

• Invokes OBP or the Test Controller.

Any fatal errors are reported to the user by way of the system LCD and
the system console. POST passes node configuration and any options to
OBP via shared data structures.

Chapter 3 69

Power-On Self Test
Overview

Reset
The following types of reset invoke POST:

• Power up reset— If a client had execution control before the power
down condition, it invokes POST to initialize the hardware. POST
initializes all hardware after a power up reset.

• Hard reset—If a client had execution control before the hard reset, it
invokes POST to initialize the hardware. POST restarts execution
and reinitializes all hardware.

• Soft reset—If a soft reset condition has occurred while POST is
executing, POST restarts execution but does not initialize main
memory.

It invokes its interactive prompt.

70 Chapter 3

Power-On Self Test
POST modules

POST modules
POST executes modules listed below in chronological order:

• Processor Initialization and Selftest—Each processor initializes itself
on power up or reset in parallel with the other processors.
Initialization includes setting values into the internal diagnostic
registers, initializing the instruction and data caches, clearing a
scratch ram area for stack and data storage, and enabling high-
priority machine checks (HPMC), low-priority machine checks
(LPMC), and transfer of control (TOC). Selftest includes instruction
set tests, instruction and data cache RAM tests and TLB RAM tests.

• SCUB Hardware Initialization—POST clears any error state in the
SCUB, initializes the SCUB hardware registers and DUART, and
initializes and optionally tests the SRAM on the SCUB (see
scuba_test_enable).

• Non-volatile Configuration Data Verification—POST verifies the
checksum of all shared data regions in a battery-backed-up SRAM
(NVRAM). POST verifies only the regions it shares with other
modules, such as OBP, and those private to POST. If a region fails, it
is rebuilt using default values.

• Hardware Configuration Determination—POST determines the ASIC
installations status and verifies that each installed ASIC responds to
register accesses. If one does not, it is reported as failing. POST then
configures the system to utilize the maximum amount of installed
hardware based on the V2500/V2600 hardware configuration rules.

• Node Hardware (ASIC) Initialization—POST sets up all available
hardware with the proper operating mode(s) enabled. Routing is
configured for the current hardware population.

• Node Main Memory Initialization—POST probes all installed
memory boards for memory installation status. It then enables each
memory board as a 2-, 4-, or 8-board configuration based on V2500/
V2600 configuration rules. All remaining memory boards are
configured to have the same logical memory population. It then
initializes main memory in parallel, using up to eight processors
using initialization hardware in the memory controllers.

Chapter 3 71

Power-On Self Test
POST modules

• Page Deallocation Table Support—POST supports reading the page
deallocation table (PDT) and remapping memory if it detects a bad
page in the HPUX good-memory region. It updates all entries to
reflect the new memory layout if remapping occurs. It also clears PDT
if memory hardware change is detected.

• Multinode Initialization—If the system is configured as part of a
multinode complex, POST initializes and configures the system for
multinode operation.

• Multinode Configuration Checking—POST first verifies that the
multinode configuration parameters are set properly. If a parameter
is not set up properly, multinode initialization will fail.

The V2500/V2600 only supports a subset of memory configurations in
a multinode system. POST checks the current memory configuration
against the list of valid multinode-capable configurations and de-
allocates memory as required to establish a valid configuration.

If any of the nodes in a multinode system contains a memory
configuration that uses four bus span, then all nodes in the system
must also use only four bus span. Four bus span occurs when a node
is 1/4 populated with memory. To check for this condition, each node
reports its local memory configuration to all other nodes in the
system. If any node reports a four bus span configuration, then all
other nodes deallocate memory to a 1/4 populated configuration, and
booting will continue.

• Multinode Hardware Initialization—The STAC configuration
registers are setup first, and then Ring Reset is asserted and
deasserted. This causes the hardware to automatically perform the
ring initialization sequence. Finally, POST verifies that all rings have
achieved the Run state.

• CTI Cache Initialization—The SMACs are configured to enable the
normal interleave CTI-cache region as specified by the
cti_cache_size parameter. This region of memory is removed from
local memory and reinitialized as CTI cache.

• Multinode Hardware Verification—POST Verifies that the next node
on each ringlet has the correct node ID and STAC ID, performs a data
pattern test on each cable, and then verifies coherent memory access
(both reads and writes) from each node to all other nodes in the
complex.

72 Chapter 3

Power-On Self Test
POST modules

• Time Of Century Synchronization Routing—POST determines the
Time Of Century monarch node. Then the internode signal routing of
the Time Of Century counter is configured. POST does NOT start the
Time Of Century counters.

• Client Boot—POST cleans up any residual state from POST
execution and boots the client specified in boot_module. POST can
boot clients with all processors or with just with the monarch
processor leaving the other processors in an idle loop.

Chapter 3 73

Power-On Self Test
Interactive mode

Interactive mode
POST provides a command line interface for configuration and
debugging. The command line interface is invoked if boot_module is set
to “interactive,” by a soft reset, or a TOC during POST execution.

If the command line interface is entered in a multinode complex, after
the nodes have synchronized, the console functionality for all nodes is
controlled through the console of the lowest numbered node (usually
node 0). The node that receives the commands from the console is
indicated by the first digit in the command prompt. Console control is
switched between nodes using the node command.

Interactive mode commands
POST supports the following commands at the line prompt:

• help—Displays a list of supported commands and their usage.

• banner—Displays the POST version and build information.

• reset [loader|post|soft]—Causes POST to perform a reset of
the node. If loader is specified, then the node is hard reset and
executes the firmware loader PDCFL. If post is specified, the node is
hard reset and executes POST. If soft is specified, the node is soft
reset and executes POST.

• node <node_number>—Switches control of the console to the node
indicated by node_number.

• dcm—Dumps the configuration map from NVRAM and displays the
hardware status of the machine, showing the hardware that is
enabled, deconfigured, or failing.

The ASIC entries have the following values:

74 Chapter 3

Power-On Self Test
Interactive mode

Table 7 SIC entry values

A DIMM entry is eight bits and has the following format:

DIMM Entry: [0|1|2|3|45|67]

The bits are defined as follows:

• In use (bit 0)—Some part of the DIMM is being used in main
memory.

• Software deconfigured (bit 1)—The DIMM has been deconfigured
by the user.

• Physical bit size (bit 2)—0 = 80 bits and 1 = 88 bits).

• Logical bit size (bit 3)—0 = 80 bits and 1 = 88 bits).

• Physical RAM size (bits 4:5)—0 = 0 Mbytes, 1 = 16 Mbytes, 2 = 64
Mbytes, 3 = 128 Mbytes.

• Logical RAM size (bits 6:7)—0 = 0 Mbytes, 1 = 16 Mbytes, 2 = 64
Mbytes, 3 = 128 Mbytes.

• setenv [parm] [value]—Sets the configuration parameter
specified by parm to the value.

• memmap—Displays any row that has been logically remapped due to
PDT entries, failing DIMM, or software deconfigured DIMMs.

• printenv [parm]—Prints the value of the configuration parameter
specified by parm. If no parameter is specified, then all are printed.

SIC entry Value

Unknown 0xff

Pass 0x01

Fail 0x10

Deconfigured 0x20

Empty 0x30

SW deconfigured 0x40

Installed 0x50

Chapter 3 75

Power-On Self Test
Interactive mode

• get_opt [asic_type [asic_number]]—Dumps the option mode
bits for the ASIC type specified by asic_type. If an asic_number is
also specified, then only the values of the ASIC are printed. If an
asic_number is not specified, then all ASICs of that asic_type are
dumped. If no asic_type is specified, then all ASICs are dumped.

• pdt—Dumps the current Page Deallocation Table (PDT) contents.

• clear_pdt—Clears out all entries in the PDT.

• bcast—Broadcasts a command to all nodes. If bcast is specified
before a valid command, the command is executed on the controlling
node, then the command is sent to each of the other nodes, one at a
time.

• nodemap—Prints the current Node ID and prompts for new values for
the multinode parameters. If a <CR> is typed, the old value is
retained. If the SSP parameters structure is rebuilt, all these
parameters are set to the default values.

The system connects as a two dimensional matrix of nodes. The node
ID describes the node’s position in the matrix. The 4-bit node ID is
composed of 2-bits of X address and 2-bits of Y address.

For example, node 2’s location in the matrix is 0,2 (binary: 00 10).
Node 6 is 1,2 (binary: 01 10). Nodes do not have to be numbered
sequentially along the ring, in a two node configuration nodes 0 (0,0)
and node 2 (0,2) are present; node 1 (0,1) is not.

The maximum supported configuration is a four-node, two-X ring,
two-Y ring system.

The nodemap parameters are as follows:

• Node ID—The ID of the current physical node. This is only
reported and can not be changed with a POST command.

• Number of nodes in complex [2]—The total number of nodes in the
complex. This is set to 1 for single node. [default: 1]

• Number of X-rings in complex\ [0]—The total number of X rings
in a given dimension. [default: 0]

• Number of Y-rings in complex\ [1]—The total number of Y rings in
a given dimension. [default: 0]

• Hypernode bit mask data [0x00000005]—A bitmask marking all
nodes detected by POST during the last boot. The bitmask is little-
endian notation, with the least significant bit representing node 0.

76 Chapter 3

Power-On Self Test
Interactive mode

This parameter is set to a default starting value based on the
other nodemap parameters each boot if generate hypernode
bitmask is TRUE. Any node failing multinode initialization is
removed from this bitmask in the other nodes during the boot
process. If multinode initialization fails on this node, only the
current node is marked in the bitmask.

If generate hypernode bitmask is FALSE, the value is fixed, and
only the nodes marked in the current bitmask are synchronized.
Any failing nodes are also left in the bitmask. Forcing a fixed
value using generate hypernode bitmask is for debug only.
[default: (bit representing current node ID)]

• Generate hypernode bitmask (0 = FALSE, 1 = TRUE) [1]—Setting
this to TRUE causes POST to initialize the hypernode bitmask to
a default starting value based on the other nodemap parameters.
Setting it to FALSE causes POST to retain the initial value to
start multinode initialization. [default: 1 (TRUE)]

Configuration parameters
The following parameters control the operation of POST:

• ts_ip—Specifies the SSP IP address for LAN messaging. The value
should be set to the IP address of the diagnostics LAN port on the
SSP. [default: 15.99.111.99]

Table 8 Name of SSP IP address for listed utilities

• scub_ip—Specifies the IP address used for LAN interface hardware
on the utilities (SCUB) board. This is the IP address that POST, OBP,
and the Test Controller use for LAN messaging with the SSP.
[default: none]

Utility Parameter name

OBP ts-ip#

POST ts_ip

sppdsh ts_ip

Chapter 3 77

Power-On Self Test
Interactive mode

Table 9 Name of scub IP address for listed utilities

• cti_cache_size—Specifies the amount of memory, in megabytes, to
reserve in the node for CTI cache. This is used only in multinode
configurations. [default: 0 Mbytes]

Table 10 Name of CTI cache size IP address for listed utilities

• boot_module—Specifies which client to turn execution control over
to at the completion of POST execution. [default: OBP]

Table 11 Name of boot module for listed utilities

• selftest_enable—Enables selftest control if the processor selftest
is executed during POST start-up execution. [default: true]

Utility Parameter name

OBP obp-ip#

POST scub-ip

sppdsh scub_ip

ts_config scub_ip

Utility Parameter name

OBP cti-cache-size

POST cti_cache_size

sppdsh cti_cache_size

Utility Parameter name

OBP boot-module

POST boot_module

sppdsh boot_module

78 Chapter 3

Power-On Self Test
Interactive mode

Table 12 Name of selftest enable for listed utilities

• scuba_test_enable—Controls whether the SCUB SRAM is tested
before initialization. This affects the processor initialization, since
processors test and initialize their own stack region. It also affects the
SCUB initialization and core LAN SRAM initialization steps for the
monarch. [default: true]

Table 13 Name of scuba test enable for listed utilities

• master_error_enable—Determines whether POST will enable
errors or not. This is used in conjunction with
use_error_overrides to determine how errors are enabled.
[default: true]

Table 14 Name of master error enable for listed utilities

• use_error_overrides—Determines if POST will use the built-in
defaults for errors or the user error overrides. This is only checked if
master_error_enable is enabled. [default: false]

Utility Parameter name

OBP selftest?

POST selftest_enable

sppdsh selftest_enable

Utility Parameter name

OBP scubatest?

POST scuba_test_enable

sppdsh scuba_test_enable

Utility Parameter name

OBP master-error-enable?

POST master_error_enable

sppdsh master_error_enable

Chapter 3 79

Power-On Self Test
Interactive mode

Table 15 Name of use error overides for listed utilities

• force_monarch—Determines if POST will force the monarch
selection to a specific processor. The processor is specified in
monarch_number [default: false]

Table 16 Name of force monarch for listed utilities

• monarch_number—Specifies the monarch processor when
force_monarch is enabled. [default: 0]

Table 17 Name of monarch number for listed utilities

• node_local_size—Specifies the amount of physical addresses, in
megabytes, starting at address 0 and ending at node_local_size.
Addresses falling in the node local region are forwarded to the local
node’s memory, not to Node 0’s memory. [default: 128 MB]

Utility Parameter name

OBP use-error-overrides?

POST use_error_overrides

sppdsh use_error_overrides

Utility Parameter name

OBP force-monarch?

POST force_monarch

sppdsh force_monarch

Utility Parameter name

OBP monarch#

POST monarch_number

sppdsh monarch_number

80 Chapter 3

Power-On Self Test
Interactive mode

Table 18 Name of local node size number for listed utilities

Utility Parameter name

OBP local-node-size

POST node_local_size

sppdsh node_local_size

Chapter 3 81

Power-On Self Test
Messages

Messages
POST has three types of messages: LCD, console, and error. This section
discusses each type.

LCD messages
The LCD messages are described in Chapter 1, “Introduction.”

Console messages
POST provides several messages that are displayed on the SSP console.
This section describes these console messages.

Type-of-boot
This message reports the type of boot for the current POST execution,
and the node ID and monarch processor.

Typical message:

POST Hard Boot on [0:PB1R_A]

Version and build
This message reports the version and build information for POST.

Typical message:
HP9000/V2500_V2600 POST Release 2.0, compiled 1998/11/04 14:33:12

Processor probe
This message reports where the processors are in the system. Only
available processors are reported; any failing or deconfigured processors
are not listed. Processors in this list may be deconfigured if they share a
Runway bus with a processors that fails the probe or is deconfigured.

82 Chapter 3

Power-On Self Test
Messages

Typical message:
Probing CPUs: PB0L_A PB0R_A PB1R_A PB1L_A PB2L_A PB2R_A PB3R_A PB3L_A

 PB4L_A PB4R_A PB5R_A PB5L_A PB6L_A PB6R_A PB7R_A PB7L_A

 PB0L_B PB0R_B PB1R_B PB1L_B PB2L_B PB2R_B PB3R_B PB3L_B

 PB4L_B PB4R_B PB5R_B PB5L_B PB6L_B PB6R_B PB7R_B PB7L_B

Utility board initialization
This message reports that the Utilities board SRAM reserved for
missing or unavailable processors is being initialized. The SRAM is
tested prior to initialization if scuba_test_enable is true.

Typical message:

Completing core logic SRAM initialization.

Main memory initialization
This message reports that main memory initialization has started.

Typical message:

Starting main memory initialization.

Memory probe
This message reports the status of the memory boards as they are
detected and probed for DIMMs

Typical message:

Probing memory: MB0L MB1L MB2R MB3R MB4L MB5L MB6R MB7R

Installed memory
This message reports the total memory installed and available, in
megabytes.

Typical message:

Installed memory: 2048 MBs, available memory: 2048 MBs

Main memory initialization started
This message marks the beginning of main memory initialization.

Chapter 3 83

Power-On Self Test
Messages

Typical message:

Initializing main memory.

Parallel memory initialization
This message reports that main memory initialization will be done with
multiple processors in parallel. Only printed if more than one processor
is available for memory initialization.

Typical message:

Parallel memory initialization in progress.

Memory initialization progress
This message reports the results of the initialization, the initializing
processor, and the memory board for each board available in the node.
Each character indicates the physical location of the DIMM and the
logical size of the DIMM. The memory information is encoded as follows:
Value Memory Type

. 16 MBytes

: 64 MBytes

| 128 MBytes

_ Empty

Hardware deconfigured

$ Software (user) deconfigured

Typical message:
 r0 r1 r2 r3

 PB0L_A MB0L [....][....][____ ____][____ ____]
 PB1R_A MB1L [....][....][____ ____][____ ____]
 PB2L_A MB2R [....][....][____ ____][____ ____]
 PB3R_A MB3R [....][....][____ ____][____ ____]
 PB4L_A MB4L [....][....][____ ____][____ ____]
 PB5R_A MB5L [....][....][____ ____][____ ____]
 PB6L_A MB6R [....][....][____ ____][____ ____]
 PB7R_A MB7R [....][....][____ ____][____ ____]

84 Chapter 3

Power-On Self Test
Messages

Building main memory map
This message indicates that a map in SCUB SRAM is being generated to
report main memory population to OBP.

Typical message:

Building main memory map.

Main memory initialization complete
This message indicates that main memory initialization is complete.

Typical message:

Main memory initialization complete.

Multinode memory initialization
This message indicates that the node is configured in a multinode system
and is starting the multinode initialization and synchronization process.

Typical message:

Starting multinode initialization.

Multinode memory configuration determination
Each node broadcasts to and receives from other nodes memory
configuration information used to perform cross-node configuration
checking for the system.

This message indicates that this internode configuration broadcasting is
in progress.

Typical message:

Collecting memory configuration from nodes: 0,6,4,2

Memory could be deconfigured in one node, based on the configuration in
one of the other nodes.

ERI ring initialization
This message indicates that multinode hardware initialization has
started. POST is currently waiting for all rings to achieve the Run state.

Chapter 3 85

Power-On Self Test
Messages

Typical message:

Initializing ERI rings.

The following message indicates when a node has verified that all ERI
Rings have achieved the Run state and broadcasted its status. The list of
synchronized nodes indicates which nodes have successfully initialized
their rings.

Typical message:

Synchronizing nodes: 0,4,2,6

CTI cache initialization
This message marks the beginning of CTI cache initialization.

Typical message:

Initializing CTI cache.

Parallel CTI cache initialization
This message reports that CTI cache initialization will be done with
multiple processors in parallel. It is printed only if more than one
processor is available for CTI cache initialization.

Typical message:

Parallel CTI cache initialization in progress.

Memory and CTI cache initialization progress
This message reports the results of the initialization, the initializing
processor, and the memory board for each board available in the node.
Each character indicates the logical location of the DIMM and the type
(or state) of the memory region inhabiting the particular DIMM.

The cache information is encoded as follows:

Value Memory Type

L Set up as all local memory

C Set up as all CTI cache

M Set up as a mixture of local memory and CTI cache

_ Empty

86 Chapter 3

Power-On Self Test
Messages

Hardware deconfigured

$ Software (user) deconfigured

Typical message:
 r0 r1 r2 r3
PB0L_A MB0L [LLLL ____][MMMM ____][____ ____][____ ____]
PB1R_A MB1L [LLLL ____][MMMM ____][____ ____][____ ____]
PB2L_A MB2R [LLLL ____][MMMM ____][____ ____][____ ____]
PB3R_A MB3R [LLLL ____][MMMM ____][____ ____][____ ____]
PB4L_A MB4L [LLLL ____][MMMM ____][____ ____][____ ____]
PB5R_A MB5L [LLLL ____][MMMM ____][____ ____][____ ____]
PB6L_A MB6R [LLLL ____][MMMM ____][____ ____][____ ____]
PB7R_A MB7R [LLLL ____][MMMM ____][____ ____][____ ____]

Remote memory testing
This message indicates the start of the remote memory test using
coherent reads and writes.

Typical message:

Verifying remote memory access.

The following message indicates when each node listed has successfully
completed the remote memory access test.

Typical message:

Synchronizing nodes: 0,6,4,2

TOC routing
This message indicates the start of Time Of Century routing procedure.

Typical message:

Enabling Time of Century synchronization routing.

The following message indicates when each node listed has successfully
completed the TOC routing test.

Typical message:

Synchronizing nodes: 0,6,4,2

System control to boot client
This message indicates that system control is being handed off to the

Chapter 3 87

Power-On Self Test
Messages

specified boot client.

For example, one of the following:

Booting OBP
Booting DIAG
Booting SPSDV
Booting RDR dumper
Booting Boombox

Interactive boot

This message indicates that POST is entering its interactive mode.
POST provides a console interface for system configuration and debug.

Typical message:

Booting Interactive

The following is the POST interactive prompt and is only seen if
boot_module is set to interactive.

Typical message:

[0:PB0L_A] POST>

Chassis codes
The processor initialization and selftest functions in POST report status
and error information with chassis codes. These chassis codes are
shared with cpu3000 and are documented in the man page with the
exception of the following POST-specific codes:

0x6103C The processor is executing it’s processor initialization
code

0x22025 The processor encountered a data error while loading
the processor Icache

0x22026 The processor encountered a tag error while loading
the processor Icache.

88 Chapter 3

Power-On Self Test
Messages

Error messages
POST provides error messages that are printed to the console. This
section describes these error messages.

SSP parameters failure
This message reports the that SSP parameters structure failed the
checksum and was rebuilt to the default structure.

Typical message:

Teststation Parameters checksum FAILED, rebuilding...

This node may be forced with the sppdsh reboot <node> default
command.

Configuration map failure
This message indicates that the configuration map structure failed the
checksum and was rebuilt to defaults. Any user deconfigured hardware
state is lost.

Typical message:

Configuration Map checksum FAILED, rebuilding...

Configuration parameters failure
This message indicates that the configuration parameters structure
failed the checksum and was rebuilt to the default structure. Any user
overrides from the default value, for parameters that have a default, is
lost. Some parameters have no default and retain the value in NVRAM.
Since NVRAM could be corrupt, these values could be invalid.

Typical message:

Configuration Parameters checksum FAILED, rebuilding...

ASIC probe failure
This message indicates that the specified ASIC failed the probe. The
status of any components that must be accessed through this component
are unknown, and they are not available if installed.

Chapter 3 89

Power-On Self Test
Messages

Typical message:
Failed probe of P1R

Unable to determine status of PB1R_A PB1L_A PB1L_B PB1L_A IOLR_B

Memory board deconfiguration
This message indicates that the specified memory board is deconfigured.
This can be due to a memory board being found on one side of memory
without a corresponding pair, since boards must be used in pairs of even/
odd boards. This can also occur when a memory board has no usable
memory.

Typical message:

Deconfiguring: MB5L

Illegal memory board configuration
This message indicates that there is an unallowed memory board
configuration. Memory boards can only be used in two-, four-, or eight-
board configurations. In the following example, a six-board configuration
was detected, and two boards will be deconfigured.

Typical message:

Illegal 6 memory board configuration.

Processor initialization failure
This message indicates that the specified processor failed to perform the
step described during parallel main memory initialization. The monarch
processor completes the initialization assigned the failing processor.

Typical message:

PB1R_A timed out during encache memory init code
PB1R_A timed out during memory initialization
PB1R_A timed out during idle request after memory init
PB0L_B failed to go idle after memory init
Unable to force CPU PB2L_A into idle loop

Monarch completing memory initialization
This message indicates that the monarch processor is completing the
memory initialization assigned to the specified processor.

90 Chapter 3

Power-On Self Test
Messages

Typical message:

Using Monarch to initialize memory assigned to PB2L_A

PDT checksum failure
This message indicates that the page deallocation table structure failed
the checksum and was rebuilt to defaults. All bad page information is
lost.

Typical message:
Page Deallocation Table (PDT) checksum FAILED, rebuilding...

Memory hardware change detected
This message indicates that POST detected a change in memory
hardware and cleared all entries in the PDT.

Typical message:
Detected a hardware change, clearing the Page Deallocation Table (PDT).

Memory remapped
This message indicates that POST remapped memory to achieve HP-UX
good memory region. This occurs when a bad page is marked within the
good memory region.

Typical message:
Memory was re-mapped to achieve HP/UX good memory region.

Contiguous memory block not found
This message indicates that POST could not find a block of contiguous
memory to place at address zero to achieve good memory. POST will
report no main memory to the OBP for this failure.

Typical message:

HP/UX good memory region could not be achieved.

Processor not reported
This message indicates that a processor failed to mark itself in the
system report register.

Chapter 3 91

Power-On Self Test
Messages

Reporting happens early in the sequence, and this failure usually
indicates the processor has failed to execute any instructions.

Typical message:

Failed probe of PB1R_B, CPU failed to report in.

Processor initialization/selftest failure
This message indicates that a processor failed at some point during
initialization or selftest. The chassis code for the module that failed is
reported.

Typical message:

Failed probe of PB1R_B
chassis code 0x6103C

Processor not responding to interrupt
This message indicates that a processor properly initialized itself but did
not respond to an external interrupt

Typical message:

Failed probe of PB1R_B
cpu PB1R_B did not respond to an interrupt

Shared Runway bus failure
This message indicates that an available processor has been
deconfigured because it shares a Runway bus with a processor that failed
to probe

Typical message:

cpu PB1R_A deconfigured due to PB1R_B shutdown.

New monarch processor selected
This message indicates that the previous monarch processor was
deconfigured and a new one was selected. The new monarch continues
the initialization of the rest of the system

Typical message:

INFO: New monarch selected: PB0R_A

92 Chapter 3

Power-On Self Test
Messages

New monarch processor not found

This message indicates that the other processor on the Runway bus with
the monarch processor was deconfigured or failed and another suitable
processor could not be found to replace the monarch.

Typical message:

WARNING: The monarch shares a Runway bus with a failed
cpu.

Multinode console error messages
The following multinode error messages could be printed to the console
as POST executes the multinode initialization procedure. The field
values shown are for example purposes only.

80-bit DIMM mode set
This message indicates that there are one or more 80-Bit DIMMs in the
node. 80-Bit DIMMs can not be used in a multinode system because
there are too few bits to hold the multinode tag data. 88-Bits DIMMs are
needed.

Use dcm -d all <node> to locate and replace these DIMMs.

Typical message:

80-bit DIMM mode is set.

Invalid CTI cache state
The parameter cti_cache_size is set to an invalid value. Use setenv
to correct this problem.

Typical message:

CTI cache is disabled

Invalid local node size
The parameter node_local_size is set to an invalid value. Use
setenv to correct this problem.

Typical message:

Force node ID region size is disabled

Chapter 3 93

Power-On Self Test
Messages

Corrupt multinode parameter
This message indicates that one of the parameters vital to multinode
initialization is corrupt. Use nodemap to correct this problem.

Typical message:

Invalid multinode configuration database entry (0x02)

POST may still attempt to boot multinode, in which case the following
message appears:

Forcing to maximum multinode configuration.

POST is enabling all possible nodes in a complex and will
deconfigure non-existent or non-working nodes as the
timeout is reached.

Invalid memory configurations
The following statements refer to possible problems with the current
memory configuration(s).

Typical message:

No main memory available

Invalid multi-node memory configuration

Re-configuring memory to a valid multinode configuration

Unable to achieve a valid multinode memory configuration

POST may attempt to deconfigure a node’s memory so that it can work
with the other nodes in its complex. If POST is successful, the new
memory configuration is used and multinode initialization proceeds
normally. If not, the dcm command may need to be invoked to assess the
current state of memory on each node. A good rule of thumb is to
identically populate all memory boards in the entire complex.

STAC deconfigured
The following message indicates that the STAC chip has been
deconfigured either by hardware or software.

Typical message:

The STAC on MB0l is deconfigured

94 Chapter 3

Power-On Self Test
Messages

STAC initialization failure
The following message indicates that the STAC chip did not pass ASIC
probing or initialization.

Typical message:

MB0l does not have a working STAC installed

CTI cache initialization failure
The following message indicates that the current memory configuration
is too small to allocate any of it for CTI cache.

Typical message:
Unable to configure CTI cache for current memory configuration

Memory board mismatch
The following message indicates that the memory board configuration of
the indicated node is not identical to the other nodes. This is not a
supported configuration. Valid multinode memory configurations are
available in the Configuration Guide.

Typical message:

Memory board config mismatch on node 2

Invalid CTI cache size
The following message indicates that the parameter cti_cache_size is
set to an invalid value for the current memory configuration. The largest
valid size less than the value specified will be used, and the
cti_cache_size parameter will be changed in NVRAM.

The CTI cache size cannot exceed 1/2 of the total memory in each node.

Typical message:
INFO: Invalid CTI cache size for current memory configuration (4096MB), resetting
cti_cache_size to 1024 MB

Chapter 3 95

Power-On Self Test
Messages

Interleave mismatch
The following message indicates that POST discovered an interleave
mismatch or that a DIMM did not pass the memory probe. A good rule of
thumb is to identically populate all memory boards in the entire
complex. It may be necessary to use the dcm command to assess the
current state of memory on each node.

Typical message:

Found mixed 4 and 8 bus interleave span
Found mixed 8 and 4 bus interleave span
Found mixed 2 and 4 bank interleave span
Found mixed 4 and 2 bank interleave span

ERI ring failures
Several typical error messages relating to the ERI rings are presented in
this section.

The following messages are typical of those received for a particular
failure mode of an ERI ring. The bit missing in the “act:” field indicates
the failing ring on this node. The bits are ordered from right to left from
0 to 7.

Typical messages:
Unable to RESET rings: (exp: x=0x00 y=0xff, act: x=0x00 y=0xfd)
Unable to clear RESET: (exp: x=0x00 y=0xff, act: x=0x00 y=0xfd)
Unable to achieve RUN state: (exp: x=0x00 y=0xff, act: x=0x00 y=0xfd)
Unable to enable rings: (exp: x=0x00 y=0xff, act: x=0x00 y=0xfd)
Unable to disable rings: (exp: x=0x0 y=0xff, act: x=0x00 y=0xfd)
Unable to enable global errors: (exp: x=0x00 y=0xff, act: x=0x00 y=0xfd)

In these examples, the failure is on ring 1 in the Y direction.

The following message indicates that an HPMC was trapped while
performing the actions indicated in the example on an off-node CSR or
memory location indicated.

96 Chapter 3

Power-On Self Test
Messages

Typical messages:
MB0l cable pattern test failed: HPMC while writing 0x000000fc.00050000
MB0l cable pattern test failed: HPMC while reading 0x000000fc.00050000
Store/flush/read test failed: HPMC while reading address 0x00000010.00000020
Store/flush/read test failed: HPMC while clearing address 0x00000010.00000020

Store/flush/read test failed: address 0x10.00000020, expected 0xaa55aa01, actual
0xaa51aa01

POST cannot continue booting multinode. The ERI cables may be
misrouted or broken or one (or more) of the System Configuration CSRs
is corrupt. Another possibility is that the tag state for this memory line is
corrupt.

The following message indicates that one of the ERI cables connected to
MB0l is broken. It is impossible to know which one, because the error
could have occurred during the write (output port) or the read (input
port).

Typical messages:

MB0l cable pattern test failed: expected 0xaaaaaaaa, actual 0xaa2aaaaa

The following message indicates that MB0l cable connection test failed:
the test expected MB0l, actual received MB4l.

Typical messages:

MB0l cable connection test failed: expected node 0, actual node 4

The cable routing is probably incorrect. Check that all ERI cables are
connected to and from their designated ports.

Ethernet packet error
The following message indicates that an ethernet packet error has
occurred. As a result, nodes in the complex may not synchronize
properly.

Typical message:

Ethernet packet error

Chapter 3 97

Power-On Self Test
Messages

Communications time-out

The following message indicates that the nodes listed are not responding.
These nodes will be removed from the expected node mask. Multinode
initialization will continue normally if possible.

Typical message:

Node communication time-out for nodes: 4 6

98 Chapter 3

Power-On Self Test
Messages

Chapter 4 99

4 Test Controller

The Test Controller is an EEPROM-based utility that provides the
environment for executing the off-line diagnostic tests. It is controlled
through parameters stored in the NVRAM on the Utilities board. The
Test Controller reads these parameters to determine its execution mode,
the number processors to test, which SMACs, SPACs, and SAGAs to
include in the testing, which subtests to run, and other diagnostic test-
specific information.

100 Chapter 4

Test Controller
Test Controller modes

Test Controller modes
There are three basic operational modes for this utility:

• Stand-alone mode

• Interactive mode

• I/O Utility mode

In stand-alone mode, cxtest invokes the Test Controller. The Test
Controller reads test parameters from NVRAM (these parameters are
written into NVRAM by cxtest before it invokes the Test Controller),
executes the test and subtests specified in NVRAM, and sets a
completion bit in NVRAM when the test and subtests are finished.
cxtest is described in Chapter 5.

In interactive mode, a user interface allows the user to select the
processors to test, to select the subtests to run, and to examine error
information. The user interface is a set of menus described in this
chapter. The Test Controller loops waiting for the start command. Prior
to issuing the start command, any global and/or processor-specific
parameters can be modified. When all tests have completed, the Test
Controller waits for the next start command. Any combination of
parameter and tests may be modified and executed.

In I/O Utility mode, the Test Controller loads and subsequently executes
a firmware utility module from the SSP. The SSP utility tc_ioutil
identifies the utility module to be loaded. tc_ioutil updates an
NVRAM location with the file name of the utility module to be loaded.
See tc_ioutil and dfdutil in Chapter 12, “Utilities,” for more details.

Chapter 4 101

Test Controller
User interface

User interface
The Test Controller provides for the control of off-line diagnostic test
execution. It utilizes a set of parameters to control its operation. The
parameters consist of the following:

• Global set that controls the overall operation of the Test Controller

• Test set (one per test) that controls how the tests are executed by the
Test Controller

• CPU parameters (one per processor) that contain status information
about the tests executing on each processor

All these parameters are in NVRAM.

The user interface allows the user to modify parameters that reside in
NVRAM, thereby controlling the operation of the Test Controller. It also
allows the user to select which subtests are executed on each of the
processors and modify the test parameters, as well as any other test
information.

The Test Controller user interface consists of two basic menus. The first
is the main menu that gives the user the following capabilities:

• Modify the POST boot selection

• Control operation of the Test Controller

• Display the current global parameter selections

• Display processor summary

• Switch processors

• Go to the Test Configuration menu

The second menu is the processor Test Control menu that provides the
following capabilities:

• Select classes of subtests to execute

• Select subtests to execute

• Specify pause enables

• Specify whether or not to loop

• Specify the test and/or subtest error counts

102 Chapter 4

Test Controller
User interface

• Read and write the 128 words of test specific information

• Select the hardware to test

• Display the current parameter selections

Main menu

Test Controller Main Menu

MAIN Menu commands

 0=Quit Test Controller
 1=Begin Test Controller Execution
 2=Halt Test Controller Execution
 3=Resume Test Controller Execution
 4=Switch CPU
 5=POST Boot Selection
 6=Execution Mode Selection
 7=Global Parameter Display
 8=CPU Summary Display
 9=Display CPU Errors
 A=Test Selection Menu
 B=Test Configuration Menu
 C=Debugging Menu
 D=Display revision

Enter Command:

Each main menu selection is defined as follows:

• 0=Quit Test Controller—Terminates the Test Controller utility and
either reboots the system (to POST and then to the selected program)
or halts the system depending on the current value of the POST Boot
Selection flag.

• 1=Begin Test Controller Execution—Starts the Test Controller utility
executing the specified subtests on the selected processors. The entire
system is started from the beginning.

• 2=Halt Test Controller Execution—Suspends temporarily the
operation of the Test Controller. This command may be entered at any
time. Only the Test Controller is halted; subtests on other processors
continue to execute.

Chapter 4 103

Test Controller
User interface

• 3=Resume Test Controller Execution—Continues execution from the
point of interruption.

• 4=Switch CPU—Allows the user to start the Test Controller on the
specified processor. The previously used processor starts executing
the command wait loop code. The user is prompted for the processor
as follows:

Enter CPU (0-1f):

• 5=POST Boot Selection—Prompts the user for the new value with the
following prompt:

 Boot Option (1=OBP, 2=TC Interactive, 3=TC Standalone 4=Loader, 5=SPSDV, 6=RDR
Dumper, 7=Boombox, 8=POST Interactive):

For all values, POST boots to ESPDV. The Test Controller performs a
hard reset to POST when the Test Controller terminates.

• 6=Execution Mode Selection—Allows the user to select the mode for
executing the subtests. The two options are serial and parallel. The
following prompt queries for the selection:

Execution Mode Selection (0=serial, 1=parallel):

• 7=Global Parameter Display—Displays the available hardware
components, the current “POST Boot Selection” value, and the
current “Execution Mode Selection” value. The display is shown
below:

Example Global Parameter display
Enter command: 7

MAIN Menu - Global Parameters Display
 CPUs: 0* 1* 2* 3* 4* 5* 6* 7* 8* 9* A* B* C* D* E* F*

 10*11*12*13*14*15 16*17*18*19*1A*1B*1C*1D 1E*1F
 SPACs: 0* 1* 2* 3* 4* 5* 6* 7*
 SMACs: 0* 1* 2 3 4 5 6* 7*
 STACs: 0 1 2 3 4 5 6 7
 SAGAs: 0 1* 2 3 4 5* 6 7
 Execution Mode Selection: Serial Parallel*
 POST Boot Selection: TC Interactive

The asterisks denote the component has passed POST processing and
is available for diagnostic testing (see processors 0-3 and SMACs 0, 2,
4, and 6 in the display).

104 Chapter 4

Test Controller
User interface

• 8=CPU Summary display—Displays a summary of the current
processor and testing information. An example of the display is
shown below:

Chapter 4 105

Test Controller
User interface

Example CPU summary display
MAIN Menu - CPU Summary Display
 Total Failures = 0
 Configuration Map
 =================
 CPUs : 0 1 2 3* 4 5 6 7 8 9 10 11 12 13 14 15
 CPUs : 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 SPACs : 0* 1* 2* 3* 4* 5* 6* 7*
 SMACs : 0* 1* 2 3 4 5 6 7
 STACs : 0 1 2 3 4 5 6 7
 SAGAs : 0* 1 2 3 4* 5 6 7

 FAIL
 CPU STATE COUNT SUBTEST TEST NAME
 === ===== ===== ======= =========
 0 Not Available n/a n/a n/a
 1 Not Available n/a n/a n/a
 2 Not Available n/a n/a n/a
 3 Idle n/a n/a n/a
 4 Not Available n/a n/a n/a
 5 Not Available n/a n/a n/a
 6 Not Available n/a n/a n/a
 7 Not Available n/a n/a n/a
 8 Not Available n/a n/a n/a
 9 Not Available n/a n/a n/a
 10 Not Available n/a n/a n/a
 11 Not Available n/a n/a n/a
 12 Not Available n/a n/a n/a
 13 Not Available n/a n/a n/a
 14 Not Available n/a n/a n/a
 15 Not Available n/a n/a n/a
 16 Not Available n/a n/a n/a
 17 Not Available n/a n/a n/a
 18 Not Available n/a n/a n/a
 19 Not Available n/a n/a n/a
 20 Not Available n/a n/a n/a
 21 Not Available n/a n/a n/a
 22 Not Available n/a n/a n/a
 23 Idle n/a n/a n/a
 24 Idle n/a n/a n/a
 25 Not Available n/a n/a n/a
 26 Not Available n/a n/a n/a
 27 Not Available n/a n/a n/a
 28 Not Available n/a n/a n/a
 29 Not Available n/a n/a n/a
 30 Not Available n/a n/a n/a
 31 Not Available n/a n/a n/a
Hit <ENTER> key to return to the MAIN Menu:

Each available hardware component is marked with an asterisk just
to the right of its number (see processors 0-3 and SMACs 0, 2, 4, and 6
in the display).

106 Chapter 4

Test Controller
User interface

The possible states in the CPU Summary Display are described in Table
19.

Table 19 Processor States

• 9=Display CPU Errors—Displays the errors for the currently selected
processor. When selected, the user is prompted for the processor as
follows:

Enter CPU [0-1f]:

CPU State Description

Not Available Denotes processor is not available for testing.

Running Denotes a test is currently running on this
processor.

Idle Denotes that no test is running on this processor.

Ready Denotes last subtest completed and ready for
next subtest.

Test Completed Denotes test completed execution on this
processor.

Error Detected Denotes test halted due to an error condition on
this processor.

Test Timeout Denotes a timeout detected during test execution
on this processor; the test is halted.

HW Reqs Not Met Denotes the hardware selected does not meet the
minimum hardware required for executing the
test.

User Halted Denotes user halted test.

Unexpected
HPMC

Denotes running test caused an HPMC; the test
is halted.

SW Deconfigured Denotes test automatically halted testing on this
processor, because of a software restriction.

Chapter 4 107

Test Controller
User interface

Example Test Parameters display.

 Test Configuration Menu - Test Parameters Display
 CPUs: (1) 0 1 2 3* 4 5 6 7 8 9 A B C D E F
 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
 SPACs: (1) 0* 1* 2* 3* 4* 5* 6* 7*
 SMACs: (0) 0* 1* 2 3 4 5 6 7
 STACs: (0) 0 1 2 3 4 5 6 7
 SAGAs: (0) 0* 1 2 3 4* 5 6 7
 Nodes: (1)
 Loop Enable: ON OFF*
 Loop Count: 00
 Test Error Count: 01
 Pause Test Start: ON OFF*
 Pause Test End: ON OFF*
 Pause Subtest Start: ON OFF*
 Pause Subtest End: ON OFF*
 Pause On Fail: ON* OFF

There are four fields:

• Date/Time—Date and time the error was logged.

• Subtest—Failing subtest number.

• Event Code—32-bit event code.

• Error Message—40-character error message

• A=Test Selection Menu—Invokes the menu. This menu allows the
user to select which tests to execute. An asterisk before the test name
denotes that it has been selected. Only the memory test is selected.
Selecting options 1 through A toggles the current state for that
particular test. Selecting option 0 returns the user to the main menu
shown below:

108 Chapter 4

Test Controller
User interface

Test Selection display

MAIN Menu - Test Selection Display

0=Return to Main Menu
1=*Memory test
2=not available
3=not available
4=ERI test
5=I/O test
6=CPU selftests
7=not available
8=not available
9=not available
A=not available
Please enter number of test:

• B=Test Configuration Menu—Switches the user to the Configuration
menu shown below for the specified test.

• C=Debugging Menu—Invokes the Debugging Menu shown below that
allows the user to read or write to any memory location on the node
and dump various data.

Example Debugging menu

MAIN Menu - Debugging Menu

0=Return to Main Menu
1=Read 32-bit Memory Location
2=Write 32-bit Memory Location
3=Read 64-bit Memory Location
4=Write 64-bit Memory Location
5=Read ECC from memory line
6=Read Tag From Memory Line
7=Print Test Revision
8=Dump last HPMC Info
9=Clear All Error Info
A=Dump TC CPU Info Structure
B=Dump TC Test Info Structure
C=Reset SONIC Interface
D=Dump SONIC Registers
Enter number of activity:

Chapter 4 109

Test Controller
User interface

• Selection 1 queries for the 40-bit address to read as follows:

Enter 40-bit address:

• Selection 2 queries for the 40-bit address and then for the 32-bits
of data to write:

Enter 32-bit data:

• Selection 3 queries for the 40-bit address to read.

• Selection 4 queries for the 40-bit address to write, and then for the
64-bits of data to write as follows:

Enter Upper 32-bits:

Enter Lower 32-bits:

• Selections 5 and 6 query for the 40-bit address for which to display
the ECC or tag of that memory line.

• Selection 7 queries the user for the test index with the following
prompt:

Enter test index [1-A]:

• Selection 8 prints information for the last HPMC that occurred on
the specified processor.

• Selection 9 clears all stored error information.

NOTE Use caution using selection 9 as there is no undo function.

• Selection A queries the user for the processor index as follows:

Enter cpu index [0-1f]:

• Selection B queries the user for the test index with the prompt
shown.

Enter test index [1-A]:

110 Chapter 4

Test Controller
User interface

Test Configuration menu
The Test Configuration menu is shown below:

Test Configuration menu

Test Configuration Menu

0=Return to Main Menu A=Hardware Selection Menu
1=Display ClassesB=Loop Enable
2=Display SubtestsC=Loop Count
3=Select ClassesD=Test Error Count
4=Select SubtestsE=Pause at Test Start
5=Read All Test ParametersF=Pause at Test End
6=Read One Test ParameterG=Pause at Subtest Start
7=Write Test ParameterH=Pause at Subtest End
8=Reset ParametersI=Pause On Failure
9=Display Test Configuration

Enter command:

Each Test Configuration menu selection is defined as follows:

• 0=Return to Main Menu—Returns the user to the Main menu.

• 1=Display Classes—Displays the current class definitions for this
diagnostic. An example of the display is shown below:

Test Configuration menu - Class display

Test Configuration Menu - Class Display

Class Description
0 class 0 description
1 class 1 description
. .
. .
n class n description

• 2=Display Subtests—Displays the current subtest definitions for this
diagnostic. An example of the display is shown in the example below.

Chapter 4 111

Test Controller
User interface

Test Configuration menu - Subtest display

Test Configuration Menu - Subtest Display

Subtest Description
0 subtest 0 description
1 subtest 1 description
. .
. .
n* subtest n description

An asterisk following the subtest number denotes that it is selected
for execution. For example, see the “n subtest n description” line.

• 3=Select Classes—Allows the user to specify which classes of subtests
to execute. These selections are in addition to any subtests selected.
The following prompt is displayed:

Enter class number:

The user must enter one of the following:

• An optional operator followed by a class number, for example 2, +2
or -2.

• Multiple class numbers (class, +class, -class are allowed)
separated by commas or spaces, for example 1,2,3.

The class numbers are decimal.

• 4=Select Subtests—Allows the user to specify which subtests to
execute. These selections are in addition to any classes selected. The
following prompt is displayed:

Enter subtest number or subtest range:

The user may enter one of the following:

• A single subtest number.

• A subtest range which consists of two numbers separated with a
dash and is inclusive. An example of a valid range entry is 100-
200.

• An optional operator followed by a subtest selection, for example
2, +2, -2, +100-200, or -100-200.

The subtest numbers are decimal values only.

112 Chapter 4

Test Controller
User interface

• 5=Read All Test Parameters—Reads all 128 words that make up the
test parameter set and displays this information. These test
parameters reside in NVRAM and are defined by the particular test.
An example of the display is shown in the example below:

Test Configuration menu - Test Parameters

Test Configuration Menu - Test Parameters

Word Value Word Value
---- ----- ---- -----
 0 a5a5a5a5 10 00000000
 1 a5a5a5a5 11 00000000
 2 a5a5a5a5 12 00000000
 3 a5a5a5a5 13 00000000
 4 00000002 14 00000000
 5 00000000 15 00000000
 6 88888888 16 00000000
 7 88888888 17 00000000
 8 00000000 18 00000000
 9 00000000 19 00000000

Hit <ENTER> key to continue; ‘q’ to quit :

If enter is pressed, the next 20 parameters are displayed in the same
format as above.

• 6=Read One Test Parameter—Allows the user to read a single test
parameter.

• 7=Write Test Parameter—Allows the user to modify any one of the
test parameter words. The user is first requested to specify which
word is to be modified:

Specify Test Parameter word [0-127]:

After specifying the word, the user is then prompted for the new
value:

New value for Test Parameter word xx:

• 8=Reset Parameters—Resets some of the parameters to their default
values. Table 20 lists the affected parameters and their default
values.

Chapter 4 113

Test Controller
User interface

Table 20 Parameter Defaults

• 9=Display Test Configuration—Displays the current values of the
processor parameters. An example of the display is shown in the
example below. An asterisk denotes the current selections. For
Example, processor 0 is selected.

This minimum hardware requirements information is enclosed in
parentheses after the hardware type label and denotes the number of
that type required. In the example below, 1 processor, 1 SPAC (the
one associated with the selected processor), and 1 SMAC are needed.

The Test Controller compares the selected hardware components
versus these minimum requirements to determine if the test can be
executed. Unless these minimum requirements are met, the test
cannot be executed.

Parameter Default value

Loop Enable 0

Loop Count 0

Test Error Count 1

Pause At Test Start 0

Pause At Test End 0

Pause At Subtest Start 0

Pause At Subtest End 0

114 Chapter 4

Test Controller
User interface

Test Configuration menu - Test Parameters display

 Test Configuration Menu - Test Parameters Display
 CPUs: (1) 0 1 2 3* 4 5 6 7 8 9 A B C D E F
 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
 SPACs: (1) 0* 1* 2* 3* 4* 5* 6* 7*
 SMACs: (0) 0* 1* 2 3 4 5 6 7
 STACs: (0) 0 1 2 3 4 5 6 7
 SAGAs: (0) 0* 1 2 3 4* 5 6 7
 Nodes: (1)
 Loop Enable: ON OFF*
 Loop Count: 00
 Test Error Count: 01
 Pause Test Start: ON OFF*
 Pause Test End: ON OFF*
 Pause Subtest Start: ON OFF*
 Pause Subtest End: ON OFF*
 Pause On Fail: ON* OFF

A=Hardware Selection menu—Invokes Hardware Selection menu shown
in the example below:

Test Configuration menu - Hardware Selection menu

Test Configuration Menu - Hardware Selection Display

0=Return to Test Configuration Menu
1=CPU Selection
2=SPAC Selection
3=SMAC Selection
4=STAC Selection
5=SAGA Selection
6=Node Selection
Enter Command:

The selections of the Hardware Selection menu are defined as follows:

• 1-5=<hardware> Selection—Selects the appropriate controller.
The following prompt is displayed:

Select <hardware>:

The user must enter one of the following:

• An optional operator followed by a hardware component
number, for example 2, +2 or -2.

Chapter 4 115

Test Controller
User interface

• Multiple hardware component numbers separated by commas
or spaces, for example 1,+2,-3.

The format 2, or +2, denotes to use this hardware component in
testing. The format -2 denotes not to use this hardware component
in testing. The 1 and +1 formats are equivalent, and leaving a
hardware component out of the list is equivalent to the -n format.

As an example, to select all the even processors the user would
enter:

0,2,4,6,8,a,c,e, 10, 12, 14, 16, 18, 1a, 1c, 1e

• 6=Node Selection—Allows the user to enter 7-bit node ids. The
format is similar to that used for processors, i.e. an optional
operator can be used and multiple entries are allowed. The
following prompt is used:

Enter Node Ids:

• B=Loop Enable—Allows the user to modify the value of the loop
enable flag, which causes the Test Controller utility to loop on all
selected subtests when the last subtest is executed. The user is
prompted for the new value as follows:

Loop Enable (0=disabled, 1=enabled):

• C=Loop Count—Allows the user to specify the number of times to loop
through the selected subtests. It is only used if the “Loop Enable” flag
is set. The user is prompted for the new value (a decimal number) as
follows:

Loop Count:

• D=Test Error Count—Allows the user to modify the maximum
number of test errors that can occur before the Test Controller utility
terminates execution of subtests on this processor. The user is
prompted for the new value (a decimal number) as follows:

Test Error Count value (1-127, N=no limit):

A value of N means that there is no limit to the number of errors that
can occur.

• E=Pause at Test Start—Allows the user to modify the pause at test
start flag. This flag results in the Test Controller pausing the testing
on this processor just prior to starting the process of determining the
first subtest to execute. The user is prompted for the new value as
follows:

116 Chapter 4

Test Controller
User interface

Pause at Test Start (0=disabled, 1=enabled):

• F=Pause at Test End—Allows the user to modify the pause at test end
flag. This flag results in the Test Controller pausing the testing on
this processor after last subtest has completed execution and all
cleanup is complete. The user is prompted for the new value as
follows:

Pause at Test End (0=disabled, 1=enabled):

• G=Pause at Subtest Start—Allows the user to modify the pause at
subtest start flag. This flag results in the Test Controller pausing the
testing on this processor just prior to starting the execution of the
current subtest. The user is prompted for the new value as follows:

Pause at Subtest Start (0=disabled, 1=enabled):

• H=Pause at Subtest End—Allows the user to modify the pause at
subtest end flag. This flag results in the Test Controller pausing the
testing on this processor just after detecting that the current subtest
has completed execution. The user is prompted for the new value as
follows:

Pause at Subtest End (0=disabled, 1=enabled):

• I=Pause on Failure—Allows the user to specify whether testing
should halt when the specified number of failures is detected. The
default is to halt. The user is prompted for the new value as follows:

Pause in Failure (0=disabled, 1=enabled)

Chapter 4 117

Test Controller
Example of running diagnostics from Test Controller command line

Example of running diagnostics from
Test Controller command line
This example shows how to run mem3000 from the Test Controller
command line within the following scenario:

• Configure mem3000 to run on a system with four memory boards
installed.

• Set the classes and subtests to be executed.

• Run the tests.

• View the results.

Configuration
To execute the scenario, perform the procedures in this and the following
sections:

Step 1. From the Test Controller main menu shown below, select the Test
Selection Menu, option A:

Test Controller main menu

MAIN Menu commands

0=Quit Test Controller
1=Begin Test Controller Execution
2=Halt Test Controller Execution
3=Resume Test Controller Execution
4=Switch CPU
5=POST Boot Selection
6=Execution Mode Selection
7=Global Parameter Display
8=CPU Summary Display
9=Display CPU Errors
A=Test Selection Menu
B=Test Configuration Menu
C=Debugging Menu
D=Display revision

118 Chapter 4

Test Controller
Example of running diagnostics from Test Controller command line

Step 2. From the Test Selection menu shown below, select Memory test, option 1.

Test Controller Test Selection menu

MAIN Menu - Test Selection Display

 0= Return to Main Menu
 1= Memory test
 2= not available
 3= not available
 4= ERI test
 5= I/O test
 6= CPU Selftests
 7= not available
 8= not available
 9= not available
 A= not available
Please enter number of test:

Step 3. Select option 0 to return to the Main Menu

Step 4. Select option B, Test Configuration Menu, from the Main Menu.

Chapter 4 119

Test Controller
Example of running diagnostics from Test Controller command line

Step 5. From the menu, select Memory test, option 1.

This opens the Test Configuration menu shown below:

Test menu

1=*Memory test
2= not available
3= not available
4= ERI test
5= I/O test
6= CPU Selftests
7= not available
8= not available
9= not available
A= not available
Please enter number of test:

Step 6. From the Test Configuration menu shown below, select the Hardware
Selection menu, option A.

Test Controller Test Selection menu

Test Configuration Menu

 0=Return to Main Menu A=Hardware Selection Menu
 1=Display Classes B=Loop Enable
 2=Display Subtests C=Loop Count
 3=Select Classes D=Test Error Count
 4=Select Subtests E=Pause at Test Start
 5=Read All Test Parameters F=Pause at Test End
 6=Read One Test Parameter G=Pause at Subtest Start
 7=Write Test Parameter H=Pause at Subtest End
 8=Reset Parameters I=Pause On Failure
 9=Display Test Configuration

Enter command:

120 Chapter 4

Test Controller
Example of running diagnostics from Test Controller command line

Step 7. From the Hardware Selection menu shown below, select CPUs, option 1.

Selecting CPUs from Hardware Selection menu

Test Configuration Menu - Hardware Selection Display
 0=Return to Test Configuration Menu
 1=CPU Selection
 2=SPAC Selection
 3=SMAC Selection
 4=STAC Selection
 5=SAGA Selection
 6=Node Selection

Step 8. At the following prompt:

Select CPUs: 0 2

Select the number of processors (CPUs).

After the number of processors is chosen, the Hardware Selection menu
reappears.

Step 9. From this menu select Return to Test Configuration menu, option 0.

Step 10. From the Test Configuration menu, the user can select option 9 to view
the changes.

Selecting classes and subtests
To select test classes and subtest, perform the following procedure:

Step 1. From the Test Configuration menu, select Select Classes, option 3.

Step 2. From the following prompt, select the test classes:

Enter class number:

Chapter 4 121

Test Controller
Example of running diagnostics from Test Controller command line

Step 3. From the Test Configuration menu, select Display Subtests, option 2.

The subtest menu shown below lists all available subtests:

mem3000 Subtests menu

100* Diagnostic CSR Read/Write Test
101* Other SMAC CSR Read/Write Test
110* Memory Data Read/Write Test
120* Memory ECC Read/Write Test
130* Memory Tag Read/Write Test
140* Memory Initialization Test
150* First 32 Memory Lines Test
190* DIMM Probe Test
200* Tag Bank Test
210* Tag Addressing Test
211* Tag Byte Uniqueness Pattern Test
230* Tag March-C Pattern #1 Test
231* Tag March-C Pattern #2 Test
232* Tag March-C Pattern #3 Test
233* Tag March-C Pattern #4 Test
234* Tag March-C Pattern #5 Test
235* Tag March-C Pattern #6 Test
236* Tag March-C Pattern #7 Test
237* Tag March-C Pattern #8 Test
238* Tag March-C User Data Pattern Test
300* Memory Bank Test
310* Memory Addressing Test
311* Byte Uniqueness Pattern Test
330* Memory March-C Pattern #1 Test
331* Memory March-C Pattern #2 Test
332* Memory March-C Pattern #3 Test
333* Memory March-C Pattern #4 Test
334* Memory March-C Pattern #5 Test
335* Memory March-C Pattern #6 Test
336* Memory March-C Pattern #7 Test
337* Memory March-C Pattern #8 Test
338* Memory March-C User Data Pattern Test
400* Memory Load/Store Test
410* Memory Data Flush Transaction Test
420* Memory Semaphore Transaction Test
500* TAG ECC Single Error Correction Test
501 DATA ECC Single Error Correction Test
502 ECC Single Error Correction Test
510* ECC Double Error Detection (coherent) test
520* ECC Double Error Detection (non-coherent) test
530* ECC Disable Test
600* Memory Access Protection Test
610* Memory Tag Test I
640* 80 vs. 88 Bit DIMM Test

122 Chapter 4

Test Controller
Example of running diagnostics from Test Controller command line

Step 4. Select all appropriate subtests. Table 21 lists the test patterns for
subtests 230 through 238.

Table 21 Test patterns for subtests 230-238 and 330-338

Selecting Display Subtests, option 2, from the Test Configuration Menu
reflects the changes.

Subtest Patterns

230, 330 0x7f7f7f7f7f7f7f7f
0x8080808080808080

231, 331 0xbfbfbfbfbfbfbfbf
0x4040404040404040

232, 332 0xdfdfdfdfdfdfdfdf
0x2020202020202020

233, 333 0xefefefefefefefef
0x1010101010101010

234, 334 0xf7f7f7f7f7f7f7f7
0x0808080808080808

235, 335 0xfbfbfbfbfbfbfbfb
0x0404040404040404

236, 336 0xfdfdfdfdfdfdfdfd
0x0202020202020202

237, 337 0xfefefefefefefefe
0x0101010101010101

238, 338 0xa5a5a5a5a5a5a5a5
0x5a5a5a5a5a5a5a5a

Chapter 4 123

Test Controller
Example of running diagnostics from Test Controller command line

Starting tests
To run the tests selected from the Test Controller main menu, select
Begin Test Controller Execution, option 1. The output is shown in the
example below:

Example of mem3000 execution
% Enter command: 1

 Execution Starting MEM3000: Subtest 234
..
..
..
..
..
..
..
..
...

 Execution Completed - No errors detected

Viewing the results
To review the results of the test, select CPU Summary Display, option 8,
from the Main menu.

An example of the results is shown below:

Example CPU Summary display
 Configuration Map
 =================
 CPUs : 0 1 2 3* 4 5 6 7 8 9 10 11 12 13 14 15
 CPUs : 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 SPACs : 0* 1* 2* 3* 4* 5* 6* 7*
 SMACs : 0* 1* 2 3 4 5 6 7
 STACs : 0 1 2 3 4 5 6 7
 SAGAs : 0* 1 2 3 4* 5 6 7
 FAIL
 CPU STATE COUNT SUBTEST TEST NAME
 === ===== ===== ======= =========
 0 Test Completed 0 150 MEM3000 - EEPROM based memory tests
 1 Idle n/a n/a n/a
 2 Test Completed 0 150 MEM3000 - EEPROM based memory tests

124 Chapter 4

Test Controller
Example of running diagnostics from Test Controller command line

Chapter 5 125

5 cxtest

The cxtest program is a graphical front end and a command line
interpreter for the test controller. It is a standalone program that runs
independently of any diagnostic tests loaded in the EEPROM on the
Utilities board.

126 Chapter 5

cxtest
Overview

Overview
The cxtest program runs on the SSP and communicates with the test
controller via the NVRAM configuration parameters on the Utilities
board. Depending on the command line, cxtest either starts the
graphics display or runs as a command line interpreter.

The GUI provides an easy and flexible way to select and run tests. The
main screen has six drop down menus. The six menus are, File Menu,
Test Menu, Global Parm Menu, Command Menu, System Configuration
Menu, and Help Menu. The menus contents are present in the sections
below.

The advantage of using the command line over the graphics user
interface is that there is a somewhat greater control over the order in
which tests are run and the ability to run the tests from a script. The
disadvantage is that the user must be more aware of what tests are
installed and how to run them.

The test controller must be in the stand-alone mode in order for cxtest
to be able to communicate with it. To run the test controller in stand-
alone mode, run the following command:

do_reset <node> tc_standalone

For example:

do_reset 0 tc_standalone

When cxtest is invoked, it first retrieves system information from
NVRAM and EEPROM on the Utilities board. This information includes:

• Tests loaded

• Parameters required for those tests

• Hardware configuration

The cxtest program works with the test controller to execute tests
based on the options selected by the user. It performs the following
functions:

• Looping

• Dispatching tests

• Configuring hardware

Chapter 5 127

cxtest
Overview

• Retrieving error information from the test controller

The test controller operates in the standalone mode when running in
conjunction with cxtest. This is true whether one is using the command
line version of cxtest or the graphics interface.

128 Chapter 5

cxtest
Graphics interface

Graphics interface
To start the cxtest graphics interface, specify the -d option on the
command line as follows:

% cxtest -d

This causes cxtest to open a window on the display. Where the window
is displayed is set by the environment variable $DISPLAY. This cannot
be changed on the command line.

The window has two areas of importance:

• Menu selections

• Test information display

Menus
There are six main menus in cxtest. Figure 42 shows the cxtest menu
bar.

 Figure 42 cxtest menu

Test information display area

Chapter 5 129

cxtest
Graphics interface

File menu
The File menu has the following options:

• Save Selections

• Restore Selections

• Log to File/Close Log File

• Clear Log

• Exit

Save Selections
The Save Selections option saves specific tests or configurations.

Restore Selections
With the Restore Selections option, the user runs specific tests without
having to click on many buttons.

Clear Display
This option clears the browser of all text. It does not clear the log file.

Log to File/Close Log File
This option starts logging the information to the file
/spp/data/<COMPLEX_NAME>/cxtest.log. The previous file is not saved.
No information present on the screen prior to this option being enabled is
saved.

Exit
The Exit option closes cxtest.

When exiting cxtest, the state of the Boot option is set to what is
displayed in the System Configuration menu. The default is to return to
OBP, so if the user intends to return to cxtest, make sure the test
controller stand-alone option is checked. See Figure 45.

Test menu
Selecting a test from the Test menu opens a window like the one in
Figure 43. The Test menu varies depending on the tests loaded in
EEPROM. If there is only one test loaded in EEPROM, then only one test
appears in this window. The test names are presented as they appear in
the EEPROM. If a test is not present in EEPROM, there is a “-” in the
menu.

130 Chapter 5

cxtest
Graphics interface

The selections presented are based on whether the Test Controller has
built a Subtest table and Class table in its tc_test_info_struct
structure.

Class menus
Selecting a test opens a window that displays all classes for the test. See
Figure 43. Down the left hand side of the window are a column of round
buttons, and down the right hand side of the window are two columns of
buttons.

Subtest menus
The left column of buttons allows the user to select all the subtests in the
class with a single click. The button will turn yellow when selected.

The round buttons on the right hand side select subtests (opening
another window for theses choices) within that class. If only some of the
subtests in a class are selected, then both the round buttons for that
class turn yellow.

Consider the round button on the left as an indication that tests within
the class have been selected and the round button on the right as an
indication that only some of the tests have been selected, as opposed to
all the tests of that class.

 Figure 43 Test Class Selection menu

The last button on the right hand side associates parameters with the
test class. Clicking this button opens another window with the
parameters for that class. If there are more parameters than will fit on
the screen, a scroll bar allows the user to scroll the list.

Also above and below each of the scroll bars are two buttons that allow
the user to page up or down through the parameter list.

Chapter 5 131

cxtest
Graphics interface

The Defaults button installs test default values into all the parameters.

If a class of tests has no parameters associated with it, the right most
button (the square one) is not shown.

Global Test Parameters menu
cxtest provides the ability to loop on a number of tests by setting the
Loop Enable count. The looping parameter is applied on a per test basis
and is applied to all the tests. As an example it the user selects two
subtests from the cpu test and one class from the memory test and sets
the loop parameter to 3, then the two subtests from the cpu test are
repeated three times in. Then the class of tests from the memory test are
repeated three times.

A number of different pausing options are selectable. The pause can be
selected before a class, after a class, before a subtest and after a subtest.
Setting any of these options will cause them to be in effect for all the
selected tests.

Clicking this menu option opens the window shown in Figure 44.

 Figure 44 cxtest Global Test Parameters menu

132 Chapter 5

cxtest
Graphics interface

Command menu
The Command menu is used to perform actions on the node or complex
being tested. These actions include:

• Go

• Reset Machine

• Read Boot Config Map

The Go selection starts the subtests. The subtests are sent to the test
controller one at a time so that the application can detect the completion
of each subtest. While running, an Abort button appears at the bottom of
the screen. Clicking on this while the test is in progress terminates all
test selections, not just the subtest currently running.

The Reset Machine option resets the system.

The Reading Boot Configuration Map must be used if the physical
location of the boards being tested changes. It allows the user to keep
cxtest running while the node is powered off and boards are moved.

The Abort button will disappear while control is returned.

System Configuration menu
The System Configuration menu displays all nodes that were on-line at
the time cxtest started. Clicking one of the menu entries opens a node
configuration window (Node x Configuration window) that allows the
user to select the hardware to test, excluding I/O-specific devices such as
disk drives or PCI adapters. See Figure 45.

Any hardware selections made on this screen apply to all tests to be run.
For example, to run test A with hardware configuration A and then test
B with hardware configuration B, the configuration must be changed
manually after test A is completed. The information contained in the
node configuration window is extracted from the boot configuration map.
If this map changes, it can be reread using the Command menu.

Chapter 5 133

cxtest
Graphics interface

 Figure 45 System configuration window

Help menu
The Help menu has two entries: About and Contents. The About
selection displays the version number of cxtest running and the
Contents selection opens a browser that can scroll through the help file.

134 Chapter 5

cxtest
Graphics interface

Display area
The display area shows the output of the tests. This output consists of
messages that indicate when the tests start, the amount of time that the
test has be running, and any error information. The user can not cut and
paste from this area. To record what transpires in test session, use the
Log to File option.

When a test is started, a large ABORT button appears. Use this to
escape out of a long test sequence or to stop a test not configured
correctly. After using the ABORT button, reset the node from the
Command menu. Once the abort command has been sent to the test
controller, the button will disappear. The abort button also disappears
when the test completes successfully.

Powering down the system
When using cxtest in a troubleshooting environment, it is not
necessary to exit and enter cxtest each time the power is cycled.

To remove power to the system (for example, to move a board), power the
system down leaving cxtest running. Make sure that no tests are
actively running.

Once power is restored, POST returns control to the test controller in the
stand-alone mode. The user must also wait for the ccmd routine to
regenerate the database. A message will appear on the SSP console
stating the database generation is complete.

After the database is regenerated, the Boot Configuration map must be
read using the Command menu. If this is not done, cxtest will not have
the correct hardware configuration information.

Chapter 5 135

cxtest
Example of running diagnostics from cxtest window

Example of running diagnostics from
cxtest window
The following example procedure shows the user how to use mem3000
from cxtest. It assumes that the node configuration has been set up
using the main cxtest window.

Step 1. From the cxtest main menu Tests option, select MEM3000 - EEPROM
based memory tests.

This opens the class selection window shown in Figure 46.

 Figure 46 mem3000 Test Class Selection window

Step 2. In the Test Class Selections window, click on the round buttons to the left
of the classes to select which class of test to execute. Any combination of
classes may be selected.

Step 3. Click on a Selected Subtests button to select which associated subtests to
run for each class. A Subtest Selections window opens for each Selected
Subtests button clicked. The Class 1 Subtest Selections window is shown
in Figure 47.

136 Chapter 5

cxtest
Example of running diagnostics from cxtest window

 Figure 47 mem3000 Class 1 Subtest Selections window

Step 4. In the Subtest Selections window for each class, click the button for
subtest to be executed. Any combination of subtests may be executed.

Step 5. To set the parameters for each class of test, click the appropriate Show
Parameters button in Test Class Selections window. This opens the Class
Parameters window. Figure 48 shows the mem3000 Class 1 Test
Parameters window.

 Figure 48 mem3000 Test Parameters window

Chapter 5 137

cxtest
Example of running diagnostics from cxtest window

Step 6. To start the selected tests and subtests, click the Go option in the
Command menu in the cxtest main window.

Step 7. View the results in the lower window pane of the cxtest main window.

138 Chapter 5

cxtest
Command line interface

Command line interface
cxtest is a utility that allows the user to run tests loaded into the Test
Controller. Tests can be specified on the command line or a Graphic User
Interface can be started to simplify test selection. cxtest allows use of
the Test Controller without being at the system console.

The advantage of using the command line over the graphics user
interface is that there is a little greater control over the order tests are
run and the ability to run the tests from a script. The disadvantage is
that the user must be more aware of what tests are installed and how to
run them.

NOTE The -d option must be used on the command line to start the GUI
interface to cxtest.

By default, cxtest tries to load the test information needed from a file.
The name of the file is cxtest.load located in the same directory as the
test. A different file can be specified by using the -f option on the
command line.

Command line options
When using the command line interface to cxtest, the command line
should be built around the following example model.

cxtest command line model
cxtest [loading options] <test> [parameters]
[looping/pausing/control] [class/subtest selections] <test>[parameters]
[looping/pausing/control] [class/subtest
selections]...etc.

Chapter 5 139

cxtest
Command line interface

Table 22 Command line loading options.

Command line test selections
The command line interface deciphers the following switches to select
tests.

• -mem—Memory diagnostic.

• -io—I/O diagnostic.

• -cpu—processor diagnostic.

• -eri—multinode diagnostic

All the arguments between two test selections apply only to first test
specified as in the following example:

Example cxtest command line

cxtest -mem -lt 3 -c 4 -io -c 2

The looping specification only applies to the memory test which runs the
class-4 tests three times. The I/O test run the class-2 test only once.

Command line looping and pausing
A number of different pausing options are available. Tests can be paused
at the beginning of a subtest, end of a subtest, beginning of a class and at
the end of a class. Table 23 shows cxtest looping and pausing options.

Loading options Description

-f <load_file_name> Use the <load_file_name> to read what
tests are to be loaded in to cxtest.

default If no load options are specified, the file
/spp/data/cxtest.load is read to know what
tests to load.

140 Chapter 5

cxtest
Command line interface

Table 23 Looping, pause, and control options

To set the number of times a test is looped on use the -lt <number>
option.

Example of cxtest -lt option

cxtest -mem -lt 3 -c 4 -io -c 2

The looping specification only applies to the memory test which runs the
class-4 tests three times. The I/O test run the class-2 test only once.

Command line error counts
The error count allows the test to proceed after an error has occurred.
The error count must be set for the test to run after a failure. To set the
error count use the -mt <number> option.

Command line class Selections
To select an entire class of subtests, use the -c <number> option. The
user can specify a range of classes by using a hyphen between the
numbers.

As an example, -c 2-4, runs classes 2, 3, and 4.

Looping and
Pause Controls

Description

-pe <ON-OFF> Pause at end of subtest

-pb <ON-OFF> Pause at beginning of subtest

-ps <ON-OFF> Pause at beginning of class

-pt <ON-OFF> Pause at end of class

-ls <number> Execute <number> of loops of the test that follows

-lt <number> Execute <number> of loops of all the tests that
follow

-t <number> Switches the test controller to run on processor
<number>. (range 0-15)

-mt <number> Allows specification of error count

Chapter 5 141

cxtest
Command line interface

To specify a list of classes, place a comma between the numbers. An
example would be -c 5,7,2. This runs class 5 then class 7 and finally
class 2.

Command line subtest selections
To select a subtest use the -s <number> option. To specify a range of
subtests, use a hyphen between the numbers. As an example, -s 100-
150, runs subtests 100 through 150.

To specify a list of subtests. place a comma between the numbers. As an
example, -s 100,150,140, runs subtest 100, then subtest 150, and
finally subtest 140.

Command line parameter specifications
To specify the value of a parameter for a test, use the -pa# <val>
option. These options must be placed before the tests that uses them on
the command line as in the following example:

Example of cxtest -pa option

cxtest -mem -c 1 -pa4 4 -pa5 2 -c 2

This runs class one, changes the value of the parameters 4 and 5, and
then run class two. The parameters only have effect for the test specified.
That is, if the memory test had been followed by -io -c 1, the value of
parameters 4 and 5 would be the defaults for the I/O tests.

There are 128 parameters in all, -pa0 through -pa127.

The user can also specify node-specific parameters from the command
line. The syntax is:

-pa#_n# <val>

where the first # is the parameter number and the second # is the node
number to which the parameter is applied.

As an example,

cxtest -mem -pa6_n0 8 -pa10_n2 16 -c 3

would set parameter 6 on node 0 to 8 and parameter 10 on node 2 to 16
and then run class 3. As with the “global” test parameters, the node-
specific parameters apply only for the test specified and must be
specified in the command line before the tests which will use them.

142 Chapter 5

cxtest
Command line interface

The underscore (_) separating the parameter number from the node
specification can be replaced with a colon (:). The command shown below
is equivalent to the prior example.

cxtest -mem -pa6:n0 8 -pa10:n2 16 -c 3

Changing test controller
The -t <proc_num> option changes the processor that is running the
test controller. This parameter must be used before the test selections
(i.e. -c xx or -s yy). There is a 10-second delay to invoke the change.
<proc_num> must be a valid processor (0-31), and it must be present and
available in the system.

Test output
Test progress and error information is displayed just as in the graphics
interface, with the exception that the information is displayed on the
terminal the test was started from. There is no logging to a file with this
interface, so the invocation of cxtest should capture standard out and
standard error into a file if the log is desired.

Chapter 6 143

6 Processor-dependent code
firmware loader

The processor-dependent code firmware loader (pdcfl) is a firmware
module that loads other firmware modules into FLASH. It is intended to
speed up download of POST and OBP on newly manufactured or
malfunctioning utility boards. If the target system can successfully boot
OBP, OBP should be used to download firmware in favor of pdcfl.
pdcfl can be loaded into FLASH using load_eprom as a stand-alone,
portable module.

144 Chapter 6

Processor-dependent code firmware loader
pdcfl loading, booting, and setup

pdcfl loading, booting, and setup

NOTE This step should not be necessary under normal circumstances.

pdcfl is loaded on all Utilities boards at the factory. If the Utilities
board FLASH contents have been erased, pdcfl may be loaded into the
Utilities board using load_eprom. load_eprom supports a -f option for
loading pdcfl to the appropriate sector in FLASH memory.

As an example:
load_eprom -n <node IP number|node IP name> -f /spp/firmware/pdcfl.fw

Once pdcfl has been loaded, it can be started by issuing a do_reset
with a loader option:

Example of do_reset with loader option

do_reset <node id> loader

NVRAM setup

NOTE This step should not be necessary under normal circumstances.

If the NVRAM contents have been corrupted, there are two parameters
that must be initialized: ts_ip and scub_ip. The usual values are:

ts_ip 15.99.111.99

scub_ip 15.99.111.116

scub_ip may vary based on the number of nodes connected to the SSP.
Use ts_config to initialize the scub_ip. If ts_ip does not match the
SSP IP, use pdcfl setenv.

SSP setup
When installing SSP software, the install scripts automatically set up
the Service Support Processor to support pdcfl.

NOTE If pdcfl is unable to access firmware files on the SSP, correct the SSP
configuration.

Chapter 6 145

Processor-dependent code firmware loader
pdcfl loading, booting, and setup

The SSP needs to be setup to act as a tftp server for loading the desired
files into FLASH memory.

This requires making these entries to the following files:

To /etc/services make the following entry:

tftp 69/udp Trivial File Transfer Protocol

To /etc/inetd.conf make the following entry:

tftp dgram udp wait root /usr/lbin/tftpd tftpd -T 90

Also send an HUP to inetd.

To /etc/passwd make the following entry:

tftp:*:510:20::/spp/firmware:/usr/bin/false

Files for loading to FLASH can then be placed in the /spp/firmware
directory.

To /var/adm/inetd.sec, make the following entry:

tftp allow 15.99.111.*

NOTE All of the above modifications are automatically performed by
ts_install when the SSP software is installed.

146 Chapter 6

Processor-dependent code firmware loader
pdcfl commands

pdcfl commands
In a multinode complex, all nodes are synchronized and controlled
through the console of the lowest numbered node (usually node 0). The
node that receives the commands from the console is indicated by the
first digit in the command prompt.

From the pdcfl prompt, the following commands are supported:

• node <number>—Switches console control to the node indicated.

• printenv <variable>—Prints configuration variables from
NVRAM.

• setenv <variable value>—Allows setting configuration
variables in NVRAM.

• lifls—Prints a listing of the LIF volume in the FLASH EEPROMs.
The listing includes the name of the module, the FLASH address at
which the module starts, the size in LIF units, the date the module
was last written, and the sectors included by the module.

An example of the lifls command

PDCFL> lifls

LIF Volume FLASH4

Name Addr Size Date Sectors
--
POST 0xF0020000 0x400 04/09/97 4-5
TC 0xF0140000 0x300 04/09/97 16-17
CPU3000 0xF0170000 0x300 04/09/97 17-18
DIODC 0xF01A0000 0x300 04/09/97 19-20
MEM3000 0xF01D0000 0x2F0 04/09/97 20-21
RDR_DUMPE 0xF01FF000 0x10 04/09/97 21
IO3000 0xF0260000 0x500 04/09/97 25-27
ERI3000 0xF02B0000 0x300 04/09/97 27-28
PDCFL 0xF02E0000 0x200 04/09/97 29-30

Chapter 6 147

Processor-dependent code firmware loader
pdcfl commands

• ver—Prints the listing of the version strings for modules loaded into
flash. The ver command can not detect OBP, PDC_entry, and
spp_pdc version strings.

• fload <file> <location>—Loads a file from the SSP tftp
directory to the address in FLASH specified in the LIF directory by
name. location can also be a specific address given in hex to allow
loading files that have not yet been entered in the LIF directory. If
this form is used, the LIF directory will not be updated.

An example of the fload command
[0:PB4L_A] PDCFL> fload mem3000.fw mem3000
TFTP server : 15.99.111.99
CUB IP : 15.99.111.166
Reading : mem3000.fw
Writing : mem3000 (each ’.’ represents 4K copied)

Reading sector 0xF01C0000
Writing sector:
Reading sector 0xF01E0000
Writing sector:

• reset [post|OBP]—Resets the node, optionally changing the boot
vector to point to the POST module.

• bcast <command>—Broadcasts the command to all nodes in a
complex. The node that has control executes the command first, then
all other nodes execute it one at a time.

• nodemap—Allows configuration of the parameters used in multinode
initialization

148 Chapter 6

Processor-dependent code firmware loader
pdcfl commands

Chapter 7 149

7 cpu3000

cpu3000 runs via the test controller and provides a basic test of the
functionality of the processor. It requires a minimum of one processor
with its associated SPAC and two EWMBs. Included in the testing are
most of the instruction set, the ALU, general/space/control registers,
external interrupts, the Diagnostic registers, TLB, the instruction cache,
the data cache, and the floating point unit. The tests are grouped
together in five classes beginning with verification of the most basic
functionality and progressing toward more complex functionality. Each
class has a set of subtests that target specific functionality.

150 Chapter 7

cpu3000
cpu3000 classes and subtests

cpu3000 classes and subtests
cpu3000 consists of a series of tests grouped together in classes
beginning with verification of the most basic functionality and
progressing toward more complex functionality. Each class has subtests
which target specific functionality.

When a failure is encountered, the chassis code is available through the
test controller along with the progress value.

cpu3000 classes
cpu3000 has five classes of tests shown in Table 24.

Table 24 Classes of cpu3000 tests

cpu3000 subtests
The cpu3000 subtests are listed in Table 25 through Table 28.

Class Name

1 Basic CPU tests

2 Instruction cache RAM test

3 Data cache RAM tests

4 TLB RAM tests

5 Functional tests requiring main memory

Chapter 7 151

cpu3000
cpu3000 classes and subtests

Table 25 cpu3000 Class 1 subtests

Subtest Name Description

100 Processor basic Verifies the majority of registers
and a basic set of instructions.
Chassis code: 0x41020.

101 Processor-ALU Verifies the processor and
arithmetic Logic unit (ALU)
functionality. Chassis code:
0x41021.

102 Processor branch Verifies the branch instructions.
Chassis code: 0x41022.

103 Processor-arithmetic
condition

Verifies the arithmetic conditions
of the unit, extract/deposit and
carry/ borrow
instructions.Chassis code:
0x41023

104 Processor bit
operations

Verifies the processor’s bit
operations. Chassis code:
0x41024

105 Space and control
registers

Verifies the space and control
registers. Chassis code: 0x41025.

110 External interrupts Executes sixty three external
interrupts, one for each EIR_VAL
position excluding Itimer.
Chassis code: 0x41026.

111 Interval timer Verifies the interval timer trap.
its masking capability, associated
control process, and timer
rollover. Chassis code: 0x41027

120 Multimedia Verifies the functional operation
of the multimedia units. Chassis
code: 0x41028.

130 Shadow Verifies the shadow registers.
Chassis code: 0x41029.

152 Chapter 7

cpu3000
cpu3000 classes and subtests

Table 26 cpu3000 Class 2 subtests

Table 27 cpu3000 Class 3 subtests

Table 28 cpu3000 Class 4 subtests

140 Diagnostic register Verifies the local Diagnose
Registers. Chassis code: 0x4102a.

141 Remote diagnostics
registers

Verifies the remote Diagnose
Registers. Chassis code: 0x4102b.

150 Register bypass Verifies the register bypass
functionality of the processor. It
tests three different types of
bypassing that can occur between
the two integer queues. Chassis
code: 0x4102c.

Subtest Name Description

210 Icache RAM This routine pattern tests the icache
ram. Chassis code: 0x42020.

Subtest Name Description

310 Dcache RAM Verifies the data cache rams. Chassis
code: 0x42070.

Subtest Name Description

400 TLB RAM Verifies the TLB ram arrays with a
pseudo random pattern. Chassis code:
0x410b1.

Subtest Name Description

Chapter 7 153

cpu3000
cpu3000 classes and subtests

Table 29 cpu3000 Class 5 subtests

Subtest Name Description

500 Late-early self
test (LST-EST)

Runs subtests 100, 101, 102, 103, 104,
105, 120, 130, and 150, first in main
memory and then in the Icache. This
test has the following chassis codes:
LST test - 0x44020
processor basic - 0x44021
processor ALU- 0x44022
processor branch - 0x44023
processor arithmetic condition -
0x44024
processor bit ops - 0x44025, space and
control registers - 0x44026
multimedia - 0x44029
shadow - 0x4402a
register bypass - 0x4402d.

510 Cache-byte Verifies the instructions that store
bytes, halfwords, and words.Chassis
code: 0x44030.

520 Cache flush Verifies the instructions that flush the
Icache and Dcache. Chassis code:
0x44040.

530 Icache miss Verifies that instructions can be
encached from coherent memory.
0x44050.

540 Dcache miss Verifies that data can be encached
from coherent memory. Chassis code:
0x44060.

560 TLB transfer Verifies TLB hits and misses, as well
as access rights and protection ID
validation. Chassis code: 0x410b2.

154 Chapter 7

cpu3000
cpu3000 classes and subtests

570 Floating point
unit

Verifies the floating point unit. It
consists of several groups of tests that
include testing of the FPU registers,
instruction tests, trap handling, and
access rights and ID validation. This
test has the following chassis codes:
FPU functionality - 0x410a0
FPU registers - 0x410a1
FPU instruction - 0x410a2
FPU traps - 0x410a3
FPU miscellaneous tests- 0x410a4
FPU bypass - 0x410a5.

Subtest Name Description

Chapter 7 155

cpu3000
cpu3000 errors

cpu3000 errors
When a failure occurs, the chassis code and the progress value are
available through the test controller. The progress value indicates what
portion of the subtest encountered the error. To match chassis codes on
other platforms, the three most significant bits of the chassis code are
modified to indicate a fault detected by the test. Therefore, a failure in
the FPU Traps test, chassis code 0x410a3, for example, would be
reported as a chassis code of 0x210a3.

156 Chapter 7

cpu3000
cpu3000 errors

Chapter 8 157

8 eri3000

eri3000 verifies the functionality of the V2500/V2600 multinode and
SCA systems. eri3000 validates the following functionality:

• METABUS—Connection between SMAC and STAC

• STAC registers

• ERI Rings—Connections between STACs of different nodes

• STAC ERI ring state machine

• Time of Century Synchronization—Signal sent from an SPAC and
propagated along a specific wire of the ERI rings

• Remote Memory Access

• CTI Cache

eri3000 is executed by the test controller. Class 1 tests require one node
with a minimum of one processor and its associated SPAC and two
memory boards with associated SMACs and STACs. Classes 2 through 4
require at least two nodes with a minimum of one processor and its
associated SPAC and two memory boards with associated SMACs and
STACs each. These nodes must be connected by ERI cables and properly
configured using the multinode configuration rules. Also, each node must
be connected on the diagnostics LAN. A provided test verifies diagnostic
LAN functionality and test synchronization capability.

158 Chapter 8

eri3000
eri3000 classes and subtests

eri3000 classes and subtests
The eri3000 tests are grouped together in classes beginning with
verification of the most basic functionality and progressing toward more
complex functionality. Each class is divided into subtests which target
specific functionality

When a failure occurs, the chassis code is available through the test
controller along with the progress value.

eri3000 classes
eri3000 has three classes of tests shown in Table 30.

Table 30 Classes of eri3000 tests

eri3000 subtests
The eri3000 subtests are listed in Table 31 through.

Class Name

1 Verifies Local STAC register Access and Metabus
Connections

2 Verifies ERI Ring Initialization and Configuration

3 Verifies STAC-STAC ERI Data Path

Chapter 8 159

eri3000
eri3000 classes and subtests

Table 31 eri3000 Class 1 subtests

Subtest Name Description

100 CSR Read/Write Verifies the ability to read/write
the Ring Configuration, Chip
Configuration, and error
registers in the STAC.

110 Metabus Walking
Ones

Uses the Error Address register
to perform a walking ones
pattern test of the metabus.

120 Metabus Walking
Zeros

Uses the Error Address register
to perform a walking zeros
pattern test of the metabus.

130 Metabus SMAC-to-
STAC Pattern

Uses the Error Address register
to perform data pattern tests that
check for pin-to-pin shorts at both
the SMAC and the STAC for the
MT (SMAC-to-STAC) Metabus
path.

140 Metabus STAC-to-
SMAC Pattern

Uses the Error Address register
to perform data pattern tests that
check for pin-to-pin shorts at both
the SMAC and the STAC for the
TM (STAC-to-SMAC) Metabus
path.

150 Metabus User Data
Pattern

Uses the Error Address register
to perform data pattern test for
the Metabus using user-specified
patterns.

160 Chapter 8

eri3000
eri3000 classes and subtests

Table 32 eri3000 Class 2 subtests

Subtest Name Description

200 LAN
Synchronization

Verifies various synchronization
messages used to coordinate tests
across nodes.

201 Ring DEAD State Verifies that all STACs in the node
can be put into the DEAD state.

210 Ring RESET
State

Verifies that all STACS in the node
can be put into the RESET state.

220 Ring INIT State Verifies that all STACs in all nodes
in the complex can get to the INIT
state. This requires node-to-node
communications. Each node, in turn,
performs the following:
Set all local rings into RESET
Tell all other nodes to go to RESET
Release RESET
Check local node for INIT

230 Ring RUN State Verifies that all STACs in all nodes
in the complex can get to the RUN
state. This requires node-to-node
communications. Each node, in turn,
performs the following:
Set all local rings into RESET
Tell all other nodes to go to RESET
Release RESET
Tell all other nodes to release RESET
Check local node for RUN

Chapter 8 161

eri3000
eri3000 classes and subtests

240 Ring CLEAR
State

Verifies that all STACs in all nodes
in the complex can get to the CLEAR
state.

250 Ring WAIT State Verifies that all STACs in all nodes
in the complex can get to the WAIT
state. This requires node-to-node
communications. Each node, in turn,
performs the following:
Set all local rings into CLEAR
Tell all other nodes to go to CLEAR
Release CLEAR
Check local node for WAIT

260 Ring Initialization Verifies that all STACs in all nodes
can negotiate from reset state to run
state. Each node, in turn, performs
the following:
Goto RESET and sync
Deassert RESET
Poll until run state achieved
Verify run state and sync
Verify scrubber or distance from
scrubber field

Subtest Name Description

162 Chapter 8

eri3000
eri3000 classes and subtests

Table 33 eri3000 Class 3 subtests

Subtest Name Description

300 Remote CSR
Read/Write

Verifies that remote STAC and SPAC
registers can be accessed from each node
to all other nodes in the complex.

310 ERI Y-ring
Walking Ones

Performs a walking ones pattern test on
the ERI from each node to the next
connected node, using the STAC Error
Address register as the data repository.

320 ERI Y-ring
Walking Zeros

Performs a walking zeros pattern test
on the ERI from each node to the next
connected node, using the STAC Error
Address register as the data repository.

330 ERI Y-ring
User Data
Pattern

Performs a data pattern test on the ERI
from each node to the next connected
node. Each node uses a local user-
specified data value. The STAC Error
Address register is used as the data
repository.

340 ERI X-ring
Walking Ones

Performs a walking ones pattern test on
the ERI from each node to the next
connected node, using the STAC Error
Address register as the data repository.

350 ERI X-ring
Walking Zeros

Performs a walking zeros pattern test
on the ERI from each node to the next
connected node, using the STAC Error
Address register as the data repository.

360 ERI X-ring
User Data
Pattern

Performs a data pattern test on the ERI
from each node to the next connected
node. Each node uses a local user-
specified data value. The STAC Error
Address register is used as the data
repository.

Chapter 8 163

eri3000
eri3000 classes and subtests

Table 34 eri3000 Class 4 subtests

Subtest Name Description

400 Scrubber
Determination
Test

Verifies that the scrubber was
determined correctly for each ring,
and that all other nodes determined
their length from the scrubber.

410 Time of Century
Synchronization
Test

Verifies the time TOC
synchronization logic for all TACs.
Each node performs the following:
turns off all SPACs TOC, sets up all
SPACs for 1 msec, turns on master
SPAC (now all SPACs are engaged),
polls until desired TOC value
achieved, checks all SPACs for TOC,
turns off all non-master SPACs, turn
off master SPAC

420 Remote Memory
Store/Flush Test

Verifies each node’s ability to perform
a store, then flush, into each other
node’s memory.

430 Network Cache
Rollout Test

Verifies the network cache will rollout
a line when another line is accessed
that would use the same cache line.

164 Chapter 8

eri3000
User parameter definitions

User parameter definitions
The Test Controller environment allows eri3000 to have 20 user
parameters. eri3000 has defined these parameters:

Table 35 User parameter definitions

Words Name Definition

0/1 64-bit user pattern #0 Used in subtests 330 and 360
(defaults=0x3c3c3c3c/0x3c3c3c3c)

2/3 64-bit user pattern #1 Used in subtests 330 and 360
(defaults=0xc3c3c3c3/0xc3c3c3c3)

4 node mask override Specifies which nodes to use in
testing. (defaults to use all nodes
that synchronized at reset)

Chapter 8 165

eri3000
eri3000 error messages

eri3000 error messages
When a failure occurs an event code is sent along with an error message.
The least significant 12 bits of the event code contain the error code.

Error messages can occur in the following formats.

Type 1—CSR mismatch
Many subtests use the type 1 message format to indicate that the actual
value of a CSR is not equal to its expected value.

 Figure 49 Type 1 error message format

There are five fields separated by / symbols. The meaning of each field is
as follows:

• Field 1—Specifies the STAC on which the failure was detected

• Field 2—Specifies CSR address where mismatch was found

• Field 3—Specifies the value U for errors found in the upper portion
(bits 0:31) and L for errors found in the lower portion (bits 32:63)

• Field 4—Specifies the actual 32-bits of data (A: corresponds to
“actual”)

• Field 5—Specifies the expected 32-bits of data

Type 2—ERI mismatch
The class 4 subtesst use this format to indicate a failure in remote
access. For errors in the upper portion (bits 0-31):

Field 1 Field 2 Field 3 Field 4 Field 5

MBxx_T/CSR xDATA/xxxxxxxx/A:xxxxxxxx/xxxxxxxx

166 Chapter 8

eri3000
eri3000 error messages

 Figure 50 Type 2 error message format

There are six fields separated by / symbols. The meaning of each field is
as follows:

• Field 1—Specifies the value U for errors found in the upper portion
(bits 0:31) and L for errors found in the lower portion (bits 32:63)

• Field 2—Specifies source node (originator of failing transaction)

• Field 3—Specifies destination node (node on which error was found)

• Field 4—Specifies 40-bit physical address

• Field 5—Specifies the actual 32-bits of data (A: is reminder)

• Field 6—Specifies the expected 32-bits of data

Type 3—ERI ring state error
All subtests use this format to indicate that not all ERI rings were able
to achieve a certain state.

 Figure 51 Type 3 error message format

There are three fields separated by / symbols. The meaning of each field
is as follows:

• Field 1—Specifies actual ring mask. Bitmask of rings which achieved
desired state. Bits 0:7 denote X-rings and 8:15 denote Y-rings. Bits
missing in this field indicate failing rings.

• Field 2—Specifies expected ring mask. Bitmask of rings being tested.
Bits 0:7 denote X-rings and 8:15 denote Y-rings.

• Field 3—Specifies expected ring state. Bits 0:4 denote X-ring state
and 12:15 denote Y-ring state

Field 1 Field 2 Field 3 Field 4 Field 5

x/SN:x/DN:x/@xx xxxxxxx/A:xxxxxxxx/xxxxxxxx

Field 6

Field 1 Field 2 Field 3

INCORRECT RING STATE/AMxxxx/EMxxxx/ESxxxxx

Chapter 8 167

eri3000
eri3000 error messages

Table 36 ERI ring states

Type 4—ERI cable pattern failure
Class 3 subtests use this format to indicate that the cable connected to
the input port of the STAC has failed a pattern test.

 Figure 52 Type 4 error message format

There are three fields separated by / symbols. The meaning of each field
is as follows:

• Field 1—Specifies the STAC which has the failing cable connected to
its input port.)

• Field 2—Specifies the actual 32-bits of data (A: is reminder)

• Field 3—Specifies the expected 32-bits of data (E: is reminder)

Type 5—ERI node routing failure
Subtest 300 uses this format to indicate that the Node_Id found in the
TAC System Configuration CSR in the destination node is not correct.
This could mean that the nodes are not properly configured, the cables

Ring
state

X-Ring Y-Ring

DEAD 00000 00000

RESET 10000 00001

INIT 20000 00002

RUN 30000 00003

CLEAR 40000 00004

WAIT 50000 00005

Field 1 Field 2 Field 3

MBxx_T/IN PORT/PATT FAIL/A:xxxxxxxx/E:xxxxxxxx

168 Chapter 8

eri3000
eri3000 error messages

are not connected correctly, or the Node_Id for a node is wrong. In rare
cases, it could mean there is a bad cable at some point on this ring (all
cables on the ring are suspect).

 Figure 53 Type 5 error message format

There are three fields separated by / symbols. The meaning of each field
is as follows:

• Field 1—Specifies the source TAC.

• Field 2—Specifies the actual 32-bits of data (A: is reminder)

• Field 3—Specifies the expected 32-bits of data (E: is reminder)

Type 6—ERI TAC routing failure
Subtest 300 uses this format to indicate that the STAC_Id found in the
STAC Chip Configuration CSR in the destination node is not correct.
This could mean that the nodes are not properly configured or the cables
are not connected correctly. In rare cases, this could mean there is a bad
cable at some point on this ring (all cables on the ring are suspect).

 Figure 54 Type 6 error message format

There are three fields separated by / symbols. The meaning of each field
is as follows:

• Field 1—Specifies the TAC which has the failing cable connected to
its input port.)

• Field 2—Specifies the actual STAC_Id reported.

• Field 3—Specifies the expected STAC_Id.

Field 1 Field 2 Field 3

MBxx_T/NODE RT/AN:xx/EN:xx

Field 1 Field 2 Field 3

MBxx_T/STAC RT/AS:xx/ES:xx

Chapter 8 169

eri3000
eri3000 error messages

Type 7—ERI synchronization failure
All subtests use this format. The diagnostic LAN broadcasts
synchronization packets to all nodes. These packets coordinate subtest
actions. They start up, perform a barrier-sync, report test status, and
report results of specific actions. A sync failure can occur for one of the
following reasons.

• Pattern failed because results from different nodes did not match.

• Pattern failed because results from different nodes did not match.
One node got an HPMC and could not send the sync packet. In this
case, one node sync failure may occur while the failing node halts or
continues to run “off in the weeds.”

• SONIC chip or diagnostic LAN cables are malfunctioning.

Synchronization errors only occur if something is definitely wrong. The
volume of sync packet traffic is often the first indication that something
has gone wrong.

 Figure 55 Type 7 error message formats

There are three fields separated by / symbols. The meaning of each field
is as follows:

• Field 1—Specifies the pattern (PATT:) used in synchronization or the
attempted (failing) ring state (AT_).

The pattern may be the actual pattern being used or (more likely) a
cryptic representation of where the test was when the sync failed.
Two interesting patterns are 0x1XXX and 0x2XXX. These syncs
involve starting and ending a subtest, respectively. (ex.
PATT:00001310 indicates failure to start subtest 310)

 SYNC FAIL/PATT: NONE /ANM:xxxx/ENM:xxxx
 SYNC FAIL/ AT_xxxxxx /ANM:xxxx/ENM:xxxx

 SF:B4 SEND/PATT:xxxxxxxx/ANM:xxxx/ENM:xxxx
 SF:B4 READ/PATT:xxxxxxxx/ANM:xxxx/ENM:xxxx

 SYNC FAIL/PATT: xxxxxxxx/ANM:xxxx/ENM:xxxx

170 Chapter 8

eri3000
eri3000 error messages

The state shown in AT_xxxxxx indicates the last ring state the node
achieved. The node has broadcasted its state and was waiting for the
rest of the nodes to sync at the same state before moving on. The
possibilities for this field are AT_DEAD, AT_RESET, AT_INIT,
AT_RUN, AT_CLEAR, AT_WAIT.

• Field 2—Specifies actual node mask. This is a bitmask of nodes which
correctly responded to the synchronization request. Bits missing in
this field indicate failing nodes.

• Field 3—Specifies expected nodes mask. Bit 0 (which denotes node 0)
is located at the far right.

Type 8—ERI Time of Century (TOC) Sync
failure
Subtest 410 uses this format to indicate a failure in configuring, starting,
or maintaining TOC synchronization on all nodes. All values are
decimal.

 Figure 56 Type 8 error message formats

There are four fields separated by / symbols. The meaning of each field is
as follows:

• Field 1—Specifies the failing SPAC on this node

• Field 2—Specifies the source node for the TOC signal

• Field 3—Specifies the source SPAC for the TOC signal.

• Field 3—Specifies the source TAC for transmission of the TOC signal
across nodes

Type 9—Error(s) Detected by Another Node
This format informs the user that the original error was detected by
another node in the complex. When a node detects a failure, it sends a
special synchronization packet to inform all other nodes that an error

Field 1 Field 2 Field 4

TOC CFG FAIL PAC:x/MASTER N:x/P:x/T:x
TOC SYNC FAIL PAC:x/MASTER N:x/P:x/T:x

Field 3

Chapter 8 171

eri3000
eri3000 error messages

has occurred. At this point, these nodes should exit the subtest gracefully
with this as their failure mode. This type of error communication does
not occur on class 1 subtests because LAN packets are not verified until
subtest 200.

Type 10—ERI System Error
This format informs the user that the system is not properly configured
for a certain subtest. Many subtests require that more than one node be
present and synchronized for proper execution. This subtest requires a
valid multinode system.

Type 11—Default Error Message
This subtest is disabled at this time.

Event codes
The following defines the meaning of the lower 12-bits of the event code.
It only indicates the type of error/event that occurred. For more detailed
information, the error/event message is needed.

Table 37 Event codes

Code Definition Error Occurrence

1 INCORRECT_RING_STATE ERI Ring State Error

2 SYNC_FAILURE ERI Sync Failure

3 CABLE_PATT_FAIL ERI Cable Pattern
Failure

4 CABLE_NODE_RT_FAIL ERI Node Routing
Failure

5 CABLE_STAC_RT_FAIL ERI STAC Routing
Failure

6 TOC_CFG_ERROR_TYPE ERI Time of Century
Configuration Failure

7 TOC_SYNC_ERROR_TYPE ERI Time of Century
Sync Failure

172 Chapter 8

eri3000
eri3000 error messages

8 CSR_UDATA_MISMATCH_TYPE CSR Mismatch (upper)

9 CSR_LDATA_MISMATCH_TYPE CSR Mismatch (lower)

A ERI_UDATA_MISMATCH_TYPE ERI Mismatch (upper)

B ERI_LDATA_MISMATCH_TYPE ERI Mismatch (lower)

C ERI_SYS_ERROR_TYPE ERI System Error

D OTHER_NODE_FAILURE_TYPE Other Node Detected
Error

Code Definition Error Occurrence

Chapter 9 173

9 io3000

The I/O diagnostic supports Symbios 875 HVD SCSI controllers, Symbios
895 LVD SCSI controllers, and Tachyon Fibre Channel controllers.

io3000 requires a node with a minimum of one processor, one SIOB with
associated SPACs, and two EWMBs with associated SMACs. To exercise
peripherals, either a Symbios SCSI or a Tachyon Fibre Channel card is
required.

174 Chapter 9

io3000
io3000 classes and subtests

io3000 classes and subtests
io3000 consists of a series of tests grouped together in classes beginning
with verification of the most basic functionality and progressing toward
more complex functionality. Each class is broken down into subtests
which target specific functionality.

The following sections describe the classes and individual subtests.

io3000 classes
io3000 has 10 classes of tests shown in Table 38.

Table 38 Classes of io3000 test

Class Name Description

1 SAGA CSR Test Verifies successful writes and reads of
SAGA CSRs.

2 SAGA Memory
Test

Verifies the functionality of SAGA context/
shared memory and prefetch memory.

5 SCSI Disk
Interface Test

Verifies the ability to successfully issue
SCSI commands to every selected disk or
Fibre Channel target.

6 Channel Mode
Test

Verifies the ability to successfully build
and use SAGA channels in all the
supported modes. Also, every channel can
be verified to be usable.

7 DMA Boundary
Conditions Test

Verifies that various DMA conditions and
every possible interrupt vector work
correctly. Also verifies every possible
interrupt vector.

8 MultiDisk
Concurrency
Test

Queues up all selected disks for
simultaneous transfers. In this test, all
disks operate in a parallel fashion.

Chapter 9 175

io3000
io3000 classes and subtests

io3000 subtests
The io3000 subtests are listed in Table 39 through Table 48.

Table 39 io3000 Class 1 subtests

11 SAGA SCSI
Tape Interface
Test

Verifies the ability to successfully issue
SCSI commands to every selected tape
drive.

12 Symbios Test Verifies the basic functionality of the
Symbios SCSI controller.

15 CDROM SCSI
Access Test

Verifies basic SCSI bus access.

16 Tachyon SAGA
PCI Access Test

Verifies the SAGA PCI interface to all
selected Tachyon controllers

17 Tachlite PCI
Loopback

Verifies the PCI interface and simple
loopback operations to the selected
controllers.

18 Fibre Channel
SCSI Mux

Verifies the node’s ability to communicate
with the FC SCSI Mux

Class Name Description

Subtest Name Description

100 CSR reset Verifies that each SAGA CSR has a
defined state and contains the proper
value after the SAGA reset is completed.

105 CSR read/
write

Verify writes and reads for each SAGA
CSR using a bitwise March C- test.

110 Error CSR Verifies that each individual error type in
the ErrorCause register can be set and is
capable of generating an interrupt.

176 Chapter 9

io3000
io3000 classes and subtests

Table 40 io3000 Class 2 subtests

Subtest Name Description

200 Context/
shared
memory read/
write

Writes to the first 64-bit location of each
context SRAM and reads them to verify
that they can be uniquely accessed.

205 Context/
shared
memory
access width

Verifies that all supported access widths
of context SRAM function properly by
writing and reading the first 64-bit
location.

210 Context/
shared
memory
march C-

Verifies that coverage for full march C-
will increase from approximately 99% to
100% of targeted fault using a bitwise
march C- algorithm.

215 Context/
shared
memory
pattern

Writes and reads random pattern to all of
context/shared memory. The random
pattern can be modified by changing the
random seed option. Also, a user-specified
pattern can be used by setting the user
pattern options.

220 Context/
shared
memory
parity
detection

Verifies the ability of SAGA to detect
parity errors on reads from context/
shared memory. This test uses the FCC
bit (force parity error to context SRAM) to
write a parity error into context SRAM.
The bad parity is read out, causing a
parity error to be detected and logged in
the SAGAs Error Cause CSR.

225 Prefetch
memory read/
write

Verifies that the first 64-bit location of
each prefetch SRAM uniquely accessed.

230 Prefetch
memory
access width

Verifies that all supported access widths
of prefetch SRAM function properly by
writing and reading the first 64-bit
location.

Chapter 9 177

io3000
io3000 classes and subtests

235 Prefetch
memory
march C-

Verify writes and reads to all of prefetch
memory using a bitwise march C-
algorithm. The default option does a
shortened version of the march C-
algorithm by using a limited pattern set.
The march C- complete enable can be set
to do a full march C- test. The test time
increases by a factor of approximately
four. The fault coverage for full march C-
increases from approximately 99% to
100% of targeted faults.

240 Prefetch
memory
pattern

Writes and reads random pattern to all of
prefetch memory. The random pattern
can be modified by changing the random
seed option. Also, a user-specified pattern
can be used by setting the user pattern
options.

245 Prefetch
memory
parity
detection

Verifies the ability of SAGA to detect
parity errors on reads from prefetch
memory. This test uses the FPR bit (force
parity error to prefetch SRAM) to write a
parity error into context SRAM. Then the
bad parity is read out, causing a parity
error to be detected and logged in the
SAGA’s Error Cause CSR.

Subtest Name Description

178 Chapter 9

io3000
io3000 classes and subtests

Table 41 io3000 Class 5 subtests

Subtest Name Description

500 SCSI disk test
unit ready

A SCSI test unit ready command is
issued to all selected devices at least
twice. This first time, it should return
with a SCSI check condition (not
reported to the user) since the SCSI bus
has been reset. The command is retried
after approximately one second. If the
second test unit ready fails, an error is
reported. The test unit ready
command does not cause a SCSI data
phase to occur.

505 SCSI disk
inquiry

A SCSI inquiry command is executed
on every selected device. This test
verifies that the device type field in the
inquiry return data is a direct access
(disk). A SCSI data in phase will occur.

510 SCSI disk read
capacity

A SCSI read capacity command is
issued to every selected device.

515 SCSI disk read A SCSI read command is issued to
every selected device. No data
verification is performed.

520 SCSI disk write A SCSI write command is issued to
every selected device. No data
verification is performed. This test only
writes to the disk if the write enable
option is turned on. The default is to
not allow writes to the device.

Chapter 9 179

io3000
io3000 classes and subtests

Table 42 io3000 Class 6 subtests

Subtest Name Description

600 Channel init Subtests 600-645
create channels by
writing to the SAGA
channel builder CSR.
The method of channel
creation and the
specific mode (ATPR
setting) is specified in
the subtest’s one line
description. Each test
will write data to the
disk and read it back
and verify it. Each
disk’s write enable
option must be set for
the writes and data
verification to be
allowed.
ATPR = 0x0

605 Channel build ATPR = 0x0

610 Channel init, data prefetch ATPR = 0x2

615 Channel init, write TLB ATPR = 0x8

620 Channel build ATPR = 0x2

625 Channel init, write TLB, data
prefetch

ATPR = 0xa

630 Channel init, TLB prefetch ATPR = 0xc

635 Channel build ATPR = 0xc

180 Chapter 9

io3000
io3000 classes and subtests

Table 43 io3000 Class 7 subtests

640 Channel init, TLB and data
prefetch

ATPR = 0xe

645 Channel build ATPR = 0xe

650 Channel context access Verifies selected SAGA
channels in virtual
mode. After each
channel is built, the
test checks the context
SRAM. If the full
channel disable option
is set, Channels 0,
1007, and power of 2
channels greater than
31 are tested.
Otherwise all channels
greater than channel
number 31 are tested.
Channels 1-21 are
reserved for controller
DMA access. (default).

Subtest Name Description

700 External interrupt Verifies all possible external
interrupt vectors. A separate
DMA is executed for each
external interrupt vector.

705 DMA across page and
channel

Verifies writes and reads of
DMAs that cross page and
channel boundaries.

710 Jump forward within a
page

Verifies writes and reads of
DMAs that jump forward
within a page.

Subtest Name Description

Chapter 9 181

io3000
io3000 classes and subtests

715 Jump backward within
a page

Verifies writes and reads of
DMAs that jump backward
within a page.

720 Jump outside of a page
(TLB encached)

Verifies a DMA jump outside of
a page. The TLB for the
destination page is encached in
context SRAM for both writes
and reads.

725 Jump outside of a page
(TLB not encached)

Verifies a DMA jump outside of
a page. The TLB for the
destination page is not
encached in context SRAM.
This means that SAGA must
fetch a new TLB before the
transfer can continue. This is
done for both writes and reads.

730 Jump outside of a
channel

Verifies a DMA jump outside of
the current channel. This is
done for both writes and reads.

735 Non contiguous TLBs Sets up a translation table for
scattered system page
mappings (noncontiguous).
Then a DMA is set up to use
this table. This causes the
SAGA to access pages
noncontiguously throughout the
DMA.

Subtest Name Description

182 Chapter 9

io3000
io3000 classes and subtests

Table 44 io3000 Class 8 subtests

Subtest Name Description

800 Multidisk nonmixed
traffic

Issues all selected devices
simultaneous SCSI writes and then
SCSI reads. The channels are
programmed in virtual mode, with
data and TLB prefetch turned on.

805 Multidisk mixed
traffic

All selected devices transfer data
simultaneously. Some devices are
performing SCSI reads, while
others are performing SCSI writes,
thereby causing mixed or
bidirectional traffic on the SCSI
and PCI busses. The channels are
programmed in virtual mode, with
data and TLB prefetch turned on.
Refetch is turned off.
ATPR = 0xe

810 Multidisk mixed
traffic

This is the same subtest as 805 but
with refetch turned on.
ATPR = 0xf

Chapter 9 183

io3000
io3000 classes and subtests

Table 45 io3000 Class 11 subtests

Subtest Name Description

1100 SCSI tape test
unit ready

Issues a SCSI test unit ready
command to all selected devices at
least three times. This first time the
SCSI bus will have been reset. This is
normal. The command is retried after
approximately one second. The
command is issued again to allow for a
check condition due to the medium
being changed. Many tape drives
require a tape to be installed in the
drive, causing the second test unit
ready to respond with a medium
changed sense status. If the third test
unit ready fails, an error is reported.
The test unit ready command does not
cause a SCSI data phase error to
occur.

1105 SCSI tape
inquiry

Executes a SCSI inquiry command on
every selected device. It verifies the
device type field in the inquiry return
data to be sequential (tape). A SCSI
data in phase error does occur.

1110 SCSI tape
rewind

Executes a SCSI rewind command on
every selected device and waits for it
to complete. The rewind command will
not cause a SCSI data phase to occur.

1115 SCSI tape read A SCSI read command is executed on
every selected device. On fixed-block
drives, one block is read. On variable-
block drives, 252 bytes are read. A
SCSI data in phase will occur.

184 Chapter 9

io3000
io3000 classes and subtests

Table 46 io3000 Class 12 subtests

Subtest Name Description

1200 Symbios PCI
configuration space

Verifies the ability of the
SAGA to access the Symbios
SCSI controller by way of the
PCI configuration space.
Verifies the PCI vendor ID and
device ID fields to be 0x1000
and 0x000f, respectively. Also
verifies the base address
registers to be writable and
readable.

1205 Symbios SCSI PCI I/O
and Memory space

Maps the Symbios SCSI
controller through PCI
configuration space so that the
controller’s CSRs may be
accessed by way of both PCI I/
O and memory space. The test
writes a pattern to a scratch
register (SCRATCHA) in the
Symbios chip. The register is
then read back to verify the
previous write succeeded.

Chapter 9 185

io3000
io3000 classes and subtests

1230 Symbios SCSI Scripts
RAM

Performs a simple data
equals address pattern test
of the SCRIPT RAM.

1240 Symbios SCSI Interrupt Copies a simple SCRIPTS
instruction to SCRIPTS RAM
on the Symbios controller. The
SCRIPTS instruction is a
simple INT opcode which,
when executed by the Symbios
chip, should cause a DMA
interrupt to be logged. The
DSP register of the Symbios
chip is set to point to the
instruction and the ISTAT
register is polled until the
interrupt is detected or the
allotted time has elapsed.

1250 Symbios SCSI DMA
engine

Writes a simple SCRIPT to
Symbios SCRIPTS RAM which
contains a MEM MOVE opcode.
SCRIPT copies 256 bytes from
one section of SCRIPTS RAM
to another SCRIPTS RAM
area. Once the SCRIPT has
completed, the test verifies
that the original block of data
was copied to the destination
area.

Subtest Name Description

186 Chapter 9

io3000
io3000 classes and subtests

Table 47 io3000 Class 15 subtests

NOTE Class 15 subtests also test DVD drives.

Subtest Name Description

1500 SCSI CDROM
test unit ready

Issues a SCSI test unit ready
command to all selected devices at
least twice. The response to first
command should return a SCSI
“check condition” (not reported to the
user) since the SCSI bus will have
been reset. After approximately one
second, the command is sent again. If
the second test unit ready fails, an
error is reported. The test unit ready
command will not cause a SCSI data
phase to occur.

1505 SCSI CDROM
inquiry

Executes a SCSI inquiry command
on every selected device. Verifies the
device type field in the inquiry return
data to indicate a CDROM.

1510 SCSI CDROM
read capacity

Issues a SCSI read capacity
command to every selected device.

1515 SCSI CDROM
read

Issues a SCSI read command to every
selected device. No data verification is
performed.

Chapter 9 187

io3000
io3000 classes and subtests

Table 48 io3000 Class 16 subtests

Table 49 io3000 Class 17 subtests

Subtest Name Description

1600 Tachyon PCI
configuration
space

Verifies the ability of the SAGA to
access the Tachyon Fibre Channel
controller by way of the PCI
configuration space. Verifies the PCI
vendor ID and device ID fields to be
0x107e and 0x0004, respectively. Also
verifies the base address registers to
be writable and readable.

1605 Tachyon PCI I/O
and Memory
space

Maps the Tachyon Fibre Channel
controller through PCI configuration
space so that the controller ’s CSRs
may be accessed by way of PC memory
space. The test writes a pattern to the
world-wide name Hi (www_hi) in the
Tachyon chip. The register is then
read back to verify the previous write
succeeded.

Subtest Name Description

1700 Tachlite PCI read Verifies the processor ’s ability to read
the PCI registers on the Tachlite card
and verifies the vendor and device ID.

188 Chapter 9

io3000
io3000 classes and subtests

Table 50 io3000 Class 18 subtests

User parameters
The test controller provides io3000 with up to 37 user parameter words.
Current parameters are defined in Table 51.

1705 Tachlite PCI
register reset

Confirms that the PCI registers reset
with the proper values.

1710 Tachlite loopback Resets the controller and then places
it in internal loopback mode. it
verifies that the controller.

1715 Tachlite
loopback/DMA
verify

Resets the controller, places it in
internal loopback mode, verifies that
loopback mode is set, performs a DMA
data transfer through the controller,
and then verifies the data. The data
patterns are: zeros followed by all
ones, a marching left one, alternating
ones and zeros followed by other
recognizable patterns. This tests the
full data bus (64 bits on the SAGA) for
connectivity errors.

Subtest Name Description

1800 Fibre Channel
Mux Test Unit
ready

Issues a Test Unit Ready to the alpa
specified in the FC test parameter.

1805 Fibre Channel
Mux Inquiry/
Device verify

Issues a Test Unit Ready and Inquiry
for the alpa specified in the FC test
parameter. The 64-bit lun values in
the specified parameter words must
be zero to direct the request to the
Mux. The vendor ID and device type
are verified to be the HP FC SCSI
Mux.

Subtest Name Description

Chapter 9 189

io3000
io3000 classes and subtests

Table 51 io3000 test parameters

Words Description

0 See Table 52.

1 Device write enable mask—Each bit in the mask
corresponds with a device. Bit 0 (MSB or left most bit in the
parameter word) corresponds to device 0, bit 29 corresponds
to the last (29th) device. Device 0 is the first device
parameter location in user parameter word 8 (see Words 8-
19 Device specification below). A binary '0' in a device's bit
field means that SCSI writes (to that disk) are not enabled.
Any test that does SCSI writes will not do so when the disk's
corresponding write enable is turned off (binary '0'). The
subtest will not be completely disabled though. This means
that SCSI reads will still take place, but data verification
will not be performed. The default setting for all disks is
SCSI writes are disabled.

2 Transfer length (class 8 only)

3 Pattern (upper 32 bits)

4 Pattern (lower 32 bits)

5 Random seed

6 Not used.

7 Not used.

8-37 Device specification. See Figure 57 on page 192.

190 Chapter 9

io3000
io3000 classes and subtests

Table 52 io3000 user test parameter word 0 bit definition

Bit Description

0-23 Unused

24 Force code copy enable—Setting this bit causes all subtests
that use encached routines to copy the code segment from
flash into main memory. The copy will be performed even if
the previous subtest already performed the copy. This
feature should not be needed unless the code in main
memory is being corrupted in a manner that cannot be
easily detected.

25 Force SCSI firmware copy enable—Setting this bit causes
all subtests that use the SCSI firmware to copy the
firmware from flash into main memory. The copy is
performed even if the previous subtest already performed
the copy. This feature should not be needed unless the SCSI
firmware in main memory is being corrupted in a manner
that cannot be easily detected.

26 Full channel test disable (subtest 650)— Setting this bit
causes subtest 650 to only test channels that are a power of
2, with the addition of channel 1007 (default). This reduces
the run time significantly on this subtest.

27 Custom SCSI firmware enable—Setting this bit allows a
non-supported version of the SCSI controller ’s firmware. If
this option is set, user parameter word 6 must contain the
length of the firmware file in half-words. Also, the custom
firmware file must be loaded into flash at sector 6.

28 Multidisk enable (classes 6-7)—Setting this bit causes all
specified disks to be tested in classes 6-7. The default is to
only test the first disk (as specified in the user parameters)
on each controller. Since classes 6-7 do disk transfers
serially, little additional coverage is gained by running the
tests on all the disks.

Chapter 9 191

io3000
io3000 classes and subtests

Device specification
Due to Core Logic SRAM space limitations, only 20 devices per SAGA
can be tested at a time. Up to 24 SCSI devices can be specified using
parameter words 8-19. Each of these parameter words contains two
device specifications, as shown in Figure 57. Word 8 contains device
specification 0 and 1. Word 9 contains 2 and 3, and so on.

Up to six Fibre Channel devices can be specified in parameter words 20-
37. Each device requires three parameter words as shown in Figure 58
and Table 54.

29 User pattern enable (subtests 215, 240, classes 6-8)—
Setting this bit causes each of the above specified tests to
use the patterns as specified in user parameter 3 and 4,
rather than a hard coded default pattern.

30 Random pattern enable (subtests 215, 240, classes 6-8)—
Setting this bit causes each of the above specified tests to
use subtest specific random patterns, rather than a hard
coded default pattern.

31 March C complete (subtests 210, 235)—Setting this bit
causes each of the above specified tests to do a complete
bitwise march C test on the SRAM. The default is to do a
quick version which takes about 25 percent of the time with
about 99 percent of the coverage.

Bit Description

192 Chapter 9

io3000
io3000 classes and subtests

 Figure 57 io3000 test parameter device specification for directly attached
SCSI targets (words 8-19)

Fields within each parameter word specify the devices as shown in Table
53. Bit 0 is the upper (left most) bit in the parameter word.

Table 53 io3000 bit definition for direct SCSI device specification (words
8-19)

Device 0 Device 1

Device 2 Device 3

Device 4 Device 5

Device 22 Device 23

Word 8

Word 9

Word 10

Word 19

Bit Definition

0-3 SAGA

4-7 Slot

8-11 SCSI target

12-15 SCSI lun

16-19 SAGA

20-23 Slot

24-27 SCSI target

28-31 SCSI lun

Chapter 9 193

io3000
io3000 classes and subtests

 Figure 58 io3000 test parameter device specification for Fibre Channel
attached SCSI targets (words 20-37)

Fields within each parameter word specify the devices as shown in Table
54. Bit 0 is the upper (left most) bit in the parameter word.

Table 54 io3000 bit definition for Fibre Channel attached SCSI device
specification (words 29-37)

Devices are numbered according to their position in the parameter list. A
device can be specified in any of the device specification locations in user
parameter space. An unused device parameter should be initialized such
that the slot field is 0xf (that is, device specification of 0x0f00).
Therefore, if both device parameters in a given parameter word are
unused, the parameter word would be set to 0x0f000f00.

FC device 0 FC device 0 lun hi

FC device 1 lun hi

FC device 2 lun hi

FC device 5 lun hi

Words 20-22

Word 23-25

Word 26-28

Word 35-37

saga/slot/alpa

FC device 1
saga/slot/alpa

FC device 2

FC device 5
saga/slot/alpa

FC device 0 lun lo

FC device 1 lun lo

FC device 2 lun lo

FC device 5 lun lo

Location Bit Definition

Word n 0-3 SAGA

Word n 4-7 Slot

Word n 8-31 AL_PA (or D_ID)

Word n+1 0-31 FC lun hi

Word n+2 0-31 FC lun lo

194 Chapter 9

io3000
io3000 classes and subtests

As an example, to specify a disk on SAGA 0x4, slot 0x2, SCSI
identification 0xa, SCSI lun 0x0, set parameter word 8 to 0x42a00f00.
The lower (right) half of the parameter word has the slot field set to the
0xf. The device number is 0 since it was entered in device 0 parameter
location.

As an example of specifying an FC device on saga 0x2, slot 0x1, AL_PA
0xcd, lun hi 0x00010000 and lun lo 0x000000, set parameter word 20 to
0x210000cd, parameter word 21 to 0x00010000, and parameter word 22
to 0x000000. This example applies to a Galaxy array with a single
controller and a lun of 01. The Galaxy controller expects the lun to be in
the 3rd and 4th nibble of the lun hi field. Each Fibre Channel device type
can use a different method of specifying luns. Check the device specific
documentation for help in specifying the lun hi and lun lo parameters for
io3000.

When using cxtest to run io3000, SAGAs are referred to according to
their position identification stamped in the node sheet metal. Table 55
correlates SAGA names with SAGA numbers:

Chapter 9 195

io3000
io3000 classes and subtests

Table 55 io3000 SAGA name to number correlation

SAGA name SAGA number

IOLF_A 4

IOLF_B 0

IOLR_A 5

IOLR_B 1

IORR_A 6

IORR_B 2

IORF_A 7

IORF_B 3

196 Chapter 9

io3000
io3000 error codes

io3000 error codes
When a failure is encountered, an event code is set along with an error
message. The least significant 12 bits of the event code contain the error
code. Table 56 lists the io3000 error codes.

io3000 general errors
io3000 general error codes post no error messages. Table 56 shows each
io3000 general error code.

Table 56 io3000 general error codes

Code Description

0x1 Core logic SRAM allocation failure. This is a software error
that indicates that the software has run out of core logic
SRAM to store internal data structures.

0x2 Interrupt allocation failure. This is a software error that
indicates that the software has run out of available external
interrupt vectors.

0x3 No device specified. io3000 was looking for a device in the
user parameters and found none.

0x4 An invalid combination of processors has been selected. Due
to the shortage of core logic SRAM, the per processor stack
space is only 1Kbytes. This has proven to be inadequate for
portions of io3000.Therefore, processor selection has been
limited such that adjacent processors cannot be selected
simultaneously. Also, processor 0xf can not be used.

0x5 A random number seed of 0 was specified. The seed must be
nonzero.

Chapter 9 197

io3000
io3000 error codes

io3000 device specification errors
io3000 device specification errors post the following error message:

SAGA_name/ctlr_num/tgt_num/lun_num

Example of io3000 device specification error message:

IOLF_A/ct0/idf/lu0

Table 57 shows each io3000 general error code.

Table 57 io3000 device specification error codes

io3000 SAGA general errors
io3000 SAGA general errors post the following error message:

SAGA_name

Example of io3000 SAGA general error message:

IOLF_B

Table 58 shows each io3000 SAGA general error code.

Code Description

0x8 Duplicate device specification. The same device was
specified multiple times in the user parameters.

0x9 Invalid SAGA number. The number in the SAGA field of one
of the device parameters is invalid (> 7).

0xa Invalid slot number. The number in the slot field of one of
the device parameters is invalid.

0xb Invalid logical unit number. The number in the logical unit
field of one of the device parameters is invalid (> 7).

0xc Duplicate Fibre Channel device specification.

0xd Invalid Fibre Channel SAGA number.

0xe Invalid Fibre Channel slot number.

0xf Invalid Fibre Channel LUN number.

198 Chapter 9

io3000
io3000 error codes

Table 58 io3000 SAGA general errors

io3000 SAGA CSR errors
io3000 SAGA CSR error codes post the following error message:

SAGA_name/address/act_val/exp_val

Example of io3000 SAGA CSR error message:

IOLF_B/fc010008/00e0000f0c000000/00e0000f0c100000

Table 59 shows each io3000 SAGA CSR error code.

Table 59 io3000 SAGA CSR errors

Code Description

0x10 An SAGA specified in the user parameters was not
available.

0x11 Unable to reset SAGA. io3000 was unsuccessful in setting
or resetting the SAGA online bit on it’s associated SPAC.

0x12 Data prefetch timeout. The prefetch valid bits in the
channel context never became valid, or did so too slowly.

Code Description

0x20 SAGA CSR failure.

0x21 SAGA PTE failure

0x22 SAGA read TLB even failure.

0x23 SAGA read TLB even failure.

0x24 SAGA read TLB odd failure.

0x25 SAGA write TLB even failure.

0x26 SAGA write TLB odd failure.

Chapter 9 199

io3000
io3000 error codes

io3000 SAGA ErrorInfo CSR error
The io3000 ErrorInfo CSR error code posts the following error message:

SAGA_name/cause_bit/address/act_val

Example of io3000 SAGA ErrorInfo CSR error:

IOLF_A/5/fc210098/10e0000f0c000000

Table 60 shows the io3000 SAGA ErrorInfo CSR error code.

Table 60 io3000 SAGA ErrorInfo CSR error

io3000 SAGA ErrorCause CSR errors
io3000 SAGA ErrorCause CSR error codes 0x54 and 0x55 post the
following error message:

SAGA_name/address/act_val

Example of io3000 SAGA ErrorCause CSR error message for 0x54 and 0x55 codes:

IOLF_A/fc210080/0000010000000000

io3000 SAGA ErrorCause CSR error code 0x58 posts the following error
message:

SAGA_name/ctlr_num/address/act_valPIC_name/address/
act_val

Example of io3000 SAGA ErrorCause CSR error message for 0x58 code:

IOLF_A/ct1/fc210108/0010000000000000/fc210080/
0000010000000000

Error 0x58 occurs when a bit in the controller’s corresponding SAGA
PCIxStatCSR is set. Specifically, the bits that cause this error are
SawAddrParErr, BrokenDev, and SawDataPtyErr.

Table 61 shows each io3000 SAGA ErrorCause CSR error code.

Code Description

0x50 SAGA ErrorInfo CSR failure.

200 Chapter 9

io3000
io3000 error codes

Table 61 io3000 SAGA ErrorCause CSR errors

io3000 SAGA SRAM errors
io3000 SAGA SRAM error codes post the following error message:

SAGA_name/address/act_val/exp_val

Example of io3000 SAGA SRAM error message:

IOLF_A/f81fc00080/5555555555555555/55f5555555555555

Table 62 shows each io3000 SAGA SRAM error code.

Table 62 io3000 SAGA SRAM errors

Code Description

0x54 SAGA ErrorCause CSR failure.

0x55 SRAM parity error expected. This error occurs when the
cci_rdperr bit in the SAGA ErrorCause does not get set
when SRAM parity errors are forced.

0x58 PCIx status failure.

Code Description

0x60 SRAM access failure. io3000 was unable to successfully
write and read SRAM on the SIOB.

0x61 SRAM march C failures. A failure was detected during the
march C test of SRAM on the SIOB. The range of codes refer
to incremental stages of the march C algorithm as follows:
none - write ~patt (->)
0x61 - read ~patt, write patt (->)
0x62 - read patt, write ~patt (->)
0x63 - read ~patt, write patt (<-)
0x64 - read patt, write ~patt (<-)
0x65 - read ~patt (<-)

0x66 SRAM read access width test failed.

0x67 SRAM write access width test failed.

0x68 SRAM pattern test failure.

Chapter 9 201

io3000
io3000 error codes

io3000 controller general errors
io3000 Controller general error codes post the following error message:

SAGA_name/ctlr_num

Example of io3000 controller general error message:

IOLF_B/ct0

Table 63 shows each io3000 general controller error code.

Table 63 io3000 Controller general errors

io3000 PCI errors
io3000 PCI error codes post the following error message:

SAGA_name/ctlr_num/address/act_val/exp_val

Example of io3000 PCI error message:

IOLF_B/ct1/f804000010/ffffff01/00000001

Table 64 shows each io3000 PCI error code.

Code Description

0x80 The controller was not detected as present per the SAGA’s
PcixStatCSR PCI card present bits.

0x81 SCSI flash read error. io3000 was unable to successfully
read the SCSI controller’s flash memory.

0x82 io3000 was unable to initialize the controller.

0x83 The loopback test on the controller failed.

0x84 The controller was unexpectedly offline.

202 Chapter 9

io3000
io3000 error codes

Table 64 io3000 PCI errors

io3000 controller command errors
io3000 controller command error codes post the following error
message:

SAGA_name/ctlr_num/tgt_num/lun_num/comp_stat/
scsi_stat:sense_key:sense_code:sense_code_qualifier

Example of io3000 controller command error message:

IOLF_A/ct0/idf/lu0/comp:0/scsi:2

Table 65 shows each io3000 controller command error code.

Table 65 io3000 controller command errors

Code Description

0x90 PCI vendor ID failure. io3000 was unable to successfully
read the controller’s PCI vendor ID

0x91 PCI device ID failure. io3000 was unable to successfully
read the controller’s PCI device ID.

0x92 PCI io base address register failure. io3000 was unable to
successfully read and write the controller ’s PCI io base
address register.

0x93 PCI memory base address register failure. io3000 was
unable to successfully read and write the controller’s PCI
memory base address register.

0x9A Symbios SCRATCHA register failure. io3000 was unable to
successfully read and write the controller ’s SCRATCHA
register.

Code Description

0xc0 SAGA command completion failure. This means a queued
command has failed and has a nonzero completion status.

0xc1 SCSI status failure. This means a SCSI command has
terminated with nonzero SCSI status.

Chapter 9 203

io3000
io3000 error codes

io3000 DMA error
The io3000 DMA error code posts the following error message:

SAGA_name/ctlr_num/tgt_num/lun_num/address/act_val/
exp_val

Example of io3000 DMA error message:

IOLF_A/ct0/idf/lu0/0004148200/a5a5a5a4/a5a5a5a5

Table 66 shows the io3000 DMA error code.

Table 66 io3000 DMA error

io3000 SCSI inquiry error
The io3000 SCSI inquiry error code posts the following error message:

SAGA_name/ctlr_num/tgt_num/lun_num/act_val/exp_val

Example of io3000 SCSI inquiry error message:

IOLF_A/ct0/idf/lu0/1/0

Table 67 shows the io3000 SCSI inquiry error code.

Table 67 io3000 SCSI inquiry error

io3000 Symbios controller specific errors
io3000 Symbios controller specific error codes post the following error
message:

SAGA_name/ctlr_num/address/act_val/exp_val

Field Description

0xd0 Data miscompare on DMA. Data in the destination buffer
does not match data in the source buffer.

Code Description

0xe0 Wrong peripheral device type found in SCSI inquiry return
data.

204 Chapter 9

io3000
io3000 error codes

Example of io3000 Symbios controller specific error message:

IOLF_B/ct1/f804000010/ffffff01/00000001

Table 68 shows each io3000 Symbios controller specific error code.

Table 68 io3000 Symbios controller specific errors

io3000 Tachyon controller specific errors
io3000 Tachyon controller specific error codes post the following error
message:

SAGA_name/ctlr_num/address/act_val/exp_val

Example of io3000 Tachyon controller specific error message:

IOLF_B/ct1/f804000010/ffffff01/00000001

Table 68 shows each io3000 Tachyon controller specific error code.

Table 69 io3000 Tachyon controller specific errors

Code Description

0x110 General failure detected on Symbios controller.

0x113 Error detected during SCRIPTS RAM pattern testing.

0x114 Interrupt test failed. The address is the address of the
interrupt register. The expected data contains the bit of that
interrupt register expected to be set, while the actual data
contains the entire contents of the ISTAT or DSTAT register.

0x115 Symbios DMA test failed.

Code Description

0x90 PCI vendor ID not as expected.

0x91 PCI device ID not as expected.

0x93 PCI memory address Base Register write/read fail.

Chapter 9 205

io3000
io3000 error codes

io3000 DIODC driver errors
io3000 Diagnostic I/O Dependent Code (DIODC) driver error codes post
the following error message:

SAGA_name/ctlr_num/tgt_num/lun_num/ctlr_status/dev_status

Example of io3000 DIODC driver error message:

IOLF_A/ct1/ct0/idf/lu0/81/0

Table 70 shows each io3000 Symbios controller specific error code.

Table 70 io3000 DIODC controller specific errors

Table 71 Symbios controller status codes

Code Description

0x120 General controller error.

0x121 No controller detected in the selected slot.

0x122 Unsupportable controller detected.

0x130 General failure detected.

0x131 Attempted to open a device. An open consists of a SCSI Test
Unit Ready followed by a SCSI Inquiry command. See the
controller status codes for more details.

Code Description

0x81 Symbios Queue Overflow.

0x82 Symbios Queue Empty.

0x88 Invalid handle.

0x84 Timeout during select.

0x85 Timeout detected waiting for a SCRIPT to complete.

0x86 Device transitioned to an unexpected phase.

0x87 Device in an undefined SCSI phase.

0x88 Target not online.

206 Chapter 9

io3000
io3000 error codes

Chapter 10 207

10 mem3000

This chapter describes mem3000, a memory test for V2500/V2600
systems.

mem3000 is core logic flash-based memory diagnostic that verifies the
functionality of the memory subsystem.

mem3000 requires a node with a minimum of one processor with two
memory boards that must be installed in pairs in order for the test to
properly execute.

208 Chapter 10

mem3000
mem3000 classes and subtests

mem3000 classes and subtests
mem3000 verifies the V2500/V2600 memory subsystem using the Test
Controller.

mem3000 requires one node with a minimum of one process with
associated SPAC and two EWMBs with associated SMACs.

mem3000 consists of a series of tests grouped together in classes
beginning with verification of the most basic functionality and
progressing toward more complex functionality. Each class has several
subtests that target specific functionality.

mem3000 classes
mem3000 has six classes of tests shown in Table 72.

Table 72 mem3000 test classes

Class 1 and class 2 subtests (with the exception of subtest 150) can be
configured to test a single EMB. Subtest 640 can also be used to test a
single EMB.

Running any other Class 4, 5, or 6 subtest with only one EMB selected is
not recommended.

Class 3 subtests and subtest 150 use memory interleaving and do not
work with a single EMB selected.

Class Description

1 Verifies the operation of the diagnostic CSRs on each EMB.

2 Verifies the tag field.

3 Verifies the data field.

4 Verifies the various coherent and noncoherent transactions.

5 Verifies the ECC.

6 Verifies miscellaneous memory capabilities.

Chapter 10 209

mem3000
mem3000 classes and subtests

mem3000 subtests
The mem3000 subtests are listed in Table 73 through Table 78.

Table 73 mem3000 class 1 subtests

Table 74 mem3000 class 2 subtests

Subtest Description

100 Verifies the diagnostic CSRs can be written and read

101 Verifies the other SMAC CSRs can be written and read

110 Verifies data can be written and read on each DIMM using
the diag CSRs

120 Verifies ECC can be written and read on each DIMM using
the diag CSR

130 Verifies the tag can be written and read on each DIMM
using the diag CSRs

140 Verifies memory lines on each DIMM can be initialized
using the diag CSRs

150 Verifies the first 64 memory lines of each EWMB using
various data patterns

190 Verifies that each DIMM passes DIMM probing similar to
the POST DIMM probe.

Subtest Description

200 Verifies the tag portion of a memory line using different
patterns

210 Verifies the tag portion of a memory line using an
addressing pattern

211 Verifies the tag portion of a memory line using a byte
uniqueness pattern, i.e. 0x0001020304050607

230-238 Verifies the tag portion of a memory line using the MarchC
algorithm and different patterns

210 Chapter 10

mem3000
mem3000 classes and subtests

Table 75 mem3000 class 3 subtests

Table 76 mem3000 class 4 subtests

Table 77 mem3000 class 5 subtests

Subtest Description

300 Verifies the memory lines on each DIMM can be written
and read using coherent operations

310 Verifies the data portion of a memory line using an
addressing pattern with coherent operations

311 Verifies the data portion of a memory line using a byte
uniqueness pattern with coherent operations

330-338 Verifies the data portion of a memory line using the
MarchC algorithm and different patterns with coherent
operations

Subtest Description

400 Verifies load and store transactions to memory

410 Verifies data flush transactions to memory

420 Verifies non-coherent transactions to memory

Subtest Description

500 Verifies ECC single bit data portion errors are detected,
logged, and corrected

501 Verifies ECC single bit tag portion errors are detected,
logged, and corrected

502 Verifies ECC single bit ECC portion errors are detected,
logged, and corrected

Chapter 10 211

mem3000
mem3000 classes and subtests

Table 78 mem3000 class 6 subtests

510 Verifies ECC double bit data errors are detected and
logged using coherent operations

520 Verifies ECC double bit data errors are detected and
logged using non-coherent operations

530 Verifies that ECC errors are ignored when disabled

Subtest Description

600 Verifies the memory system detects and reports accesses to
all illegal and/or invalid memory space

610 Verifies the memory system detects and reports error
conditions when the memory tag state is ERROR

640 Determines whether 80-bit or 88-bit DIMMs are installed

Subtest Description

212 Chapter 10

mem3000
User parameters

User parameters
The Test Controller allows mem3000 eight user parameters. Table 79
defines these parameters:

Table 79 User parameter definitions

Parameter 4 defaults to the value 2 causing the test to automatically
probe all known DIMMs to determine their type: 80- or 88-bit DIMMs.
The test then changes the parameter from 2 to 0 or 1. It is set to 1 if only
88-bit DIMMs were found. If any 80-bit DIMMs were found, it is set to 0.

Parameters 6 and 7 default to the value 0xfffffffff, the bit mask that
indicates whether a memory octant should be tested. When the Test
Controller is started, mem3000 changes the values to match the memory
that POST enabled on the node.

Each range is 0x0 through 0xffffffff. Each byte represents the physical
octant mask for a memory board.

Parameter 6 contains the masks for boards 0 through 3 in the order
shown in Figure 59.

Words Usage

0/1 64-bit user pattern 0 used in subtests 238 and 338
(defaults=0xa5a5a5a5/0xa5a5a5a5)

2/3 64-bit user pattern 1 used in subtests 238 and 338
(defaults=0x5a5a5a5a/0x5a5a5a5a)

4 Denotes 88-bit DIMMs are installed (default=2)

5 Denotes test is to run with errors disabled (default=0)

6/7 Octant mask. (default: 0xffffffff 0xffffffff)

Chapter 10 213

mem3000
User parameters

 Figure 59 Format of parameter 6

Parameter 7 contains the masks for boards 4-7 in the order shown in
Figure 60.

 Figure 60 Format of parameter7

As an example, the Octant Mask for board 0 is encoded in the first two
digits of Parameter 6.

Subtests 100, 101, 150, and 310-338 DO NOT use the Octant Mask.
Subtests 100 and 101 test CSRs on all enabled SMACs. Subtests 150 and
310-338 use the Main Memory Map built by POST.

0x XX XX XX XX

Board
0 Board

1 Board
2 Board

3

0x XX XX XX XX

Board
4 Board

5 Board
6 Board

7

214 Chapter 10

mem3000
mem3000 error codes

mem3000 error codes
When a failure is encountered, an event code is set along with an error
message. The least significant 12 bits of the event code contain the error
code. Table 80 lists the mem3000 error codes.

Table 80 mem3000 error codes

Code Meaning

001 Diagnostic address CSR miscompare occurred (upper 32-bits)

002 Diagnostic address CSR miscompare occurred (lower 32-bits)

003 Diagnostic data CSR miscompare occurred (used only by
class 1)

004 Diagnostic data CSR miscompare occurred (in upper 32-bits)

005 Diagnostic data CSR miscompare occurred (in lower 32-bits)

008 Miscompare occurred in the upper 32-bits of the CSR

009 Miscompare occurred in the lower 32-bits of the CSR

010 Memory data miscompare occurred

011 Memory data miscompare occurred (upper 32-bits)

012 Memory data miscompare occurred (lower 32-bits)

013 Memory data matched when it shouldn’t have (upper 32 bits)

014 Memory data matched when it shouldn’t have (lower 32-bits)

020 Miscompare occurred in the upper 32-bits of the tag

 021 Miscompare occurred in the lower 32-bits of the tag

022 The tag changed when it shouldn’t have

030 ECC data miscompare occurred

031 An ECC error was logged when it shouldn’t have been

032 SMAC did not correct the single bit ECC failure as expected

Chapter 10 215

mem3000
mem3000 error codes

033 SMAC did not log the occurrence of a single bit ECC failure

035 SMAC did not log the occurrence of a double bit ECC failure

040 Data miscompare error occurred in sequence #1 of MarchC
test (upper 32-bits)

041 Data miscompare error occurred in sequence #1 of MarchC
test (lower 32-bits)

042 Data miscompare error occurred in sequence #2 of MarchC
test (upper 32-bits)

043 Data miscompare error occurred in sequence #2 of MarchC
test (lower 32-bits)

044 Data miscompare error occurred in sequence #3 of MarchC
test (upper 32-bits)

045 Data miscompare error occurred in sequence #3 of MarchC
test (lower 32-bits)

046 Data miscompare error occurred in sequence #4 of MarchC
test (upper 32-bits)

047 Data miscompare error occurred in sequence #4 of MarchC
test (lower 32-bits)

060 A semaphore operation did not trigger

070 Incorrect data returned for a semaphore operation

080* Incorrect info in SMAC error CSRs (single bit data ECC -
read)

090* Incorrect info in SMAC error CSRs (single bit tag ECC -
read)

0a0* Incorrect info in SMAC error CSRs (double bit data ECC -
read)

0b0* Incorrect info in SMAC error CSRs (double bit data ECC -
coh_inc op)

0c0* Tag state did not equal ERROR as it should have

Code Meaning

216 Chapter 10

mem3000
mem3000 error codes

The asterisks next to the error codes listed in Table 80 actually indicate a
range of events as shown in Table 81.

Table 81 Extended range for error codes

0d0* Tag state did not equal INVALID as it should have

0e0* An unexpected error was detected in the SMAC error CSRs

100* Uninstalled Memory

110* Invalid CSR

120* Network Cache

130* Unprotected Memory

140* Alternate Interleave

150 An HPMC was detected on access to the specified address

200 Denotes the EWMB contains all 80-bit DIMMs

201 Denotes the EWMB contains all 88-bit DIMMs

202 Denotes the EWMB contains a mixture of 80-bit and 88-bit
DIMMs

220 Some portion of test code is copied to memory and branched
to in attempt to load the code into the icache. The
initialization routine detected that code failed to implicitly
encache when executed from coherent memory.

Code Meaning

Code Meaning

code+1 Error cause CSR miscompare error (upper 32-bits)

code+2 Error cause CSR miscompare error (lower 32-bits)

code+3 Error info CSR miscompare error in the err type field

code+4 Error info CSR miscompare error in the ENUM field

code+5 Error info CSR miscompare error in the cc/msg field

Chapter 10 217

mem3000
mem3000 error codes

Table 82 Patterns used in specified subtests

Error messages
When a failure is encountered an event code is set along with an error
message. The least significant 12 bits of the event code contain the error
code. The error codes and their error message descriptions are defined in
the following section. Error codes can have one of three different formats.

Type one error format
Type one errors are used by many of the subtests. Figure 61 shows the
format of the type one error format.

code+6 Error address CSR miscompare error (upper 32-bits)

code+7 Error address CSR miscompare error (lower 32-bits)

code+8 Error info CSR syndrome code miscompare error

Subtest Pattern

230/330 0x7f7f7f7f7f7f7f7f and 0x8080808080808080

231/331 0xbfbfbfbfbfbfbfbf and 0x4040404040404040

232/332 0xdfdfdfdfdfdfdfdf and 0x2020202020202020

233/333 0xefefefefefefefef and 0x1010101010101010

234/334 0xf7f7f7f7f7f7f7f7 and 0x0808080808080808

235/335 0xfbfbfbfbfbfbfbfb and 0x0404040404040404

236/336 0xfdfdfdfdfdfdfdfd and 0x0202020202020202

237/337 0xfefefefefefefefe and 0x0101010101010101

238/338 0xa5a5a5a5a5a5a5a5 and 0x5a5a5a5a5a5a5a5a (user
parameters 0-3)

Code Meaning

218 Chapter 10

mem3000
mem3000 error codes

 Figure 61 Type one error message format

There are six fields separated by / symbols. The meaning of each field is
as follows:

• Field 1—Specifies the EWMB on which the failure was detected

• Field 2—Specifies the DIMM on which the failure was detected

• Field 3—Specifies the failing 40-bit address

• Field 4—Specifies the actual 32-bits of data

• Field 5—Specifies the expected 32-bits of data

• Field 6—Specifies the error as follows:

• COH-OP—Coherent operation

• DCSR—Diagnostic CSR access

• CSR DATA - CSR data mismatch

• DECC— ECC mismatch

• DTAG—TAG mismatch

• DDAT—DATA mismatch

Type two errors
The type two error is used only by subtest 640 which determines what
type of DIMMs are installed on the first EWMB specified.

A type two error is shown Figure 62.

 Figure 62 Type two error message format

MBxx_M/BxSx/xxxxxxxxxx/xxxxxxxx/xxxxxxxx/xxxxxxxx

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6

MBaa_M DM Q0:xxxx Q1:xxxx Q2:xxxx Q3:xxxx

Field 1 Field 2

Chapter 10 219

mem3000
mem3000 error codes

The two fields of the type two error are as follows:

• Field 1—Specifies the EWMB to which the information pertains

• Field 2—Specifies the type of DIMM detected as follows:

• x—Non-existent DIMM

• 0—80-bit DIMM

• 1—88-bit DIMM

The correspondence of these values to the actual DIMM locations is
shown in Figure 63.

 Figure 63 Corresponding type two values to DIMM location

Type three errors
The type three error (shown in Figure 64) is used only by class 3 subtests
to report spurious single-bit ECC errors that occur during testing. The
test is designed specifically to bring out these types of failures. However,
if failures of other types occur, they are reported in their respective
format.

 Figure 64 Type 3 error message format

There are five fields separated by / symbols. The meaning of each field is
as follows:

• Field 1—Specifies the EWMB on which the failure was detected

• Field 2—Specifies the DIMM on which the failure was detected

• Field 3—Specifies the SMAC error address CSR value

• Field 4—Specifies the syndrome bits

• Field 5—Reminds that this is a single bit ECC error

 Q0:xxxx Q1:xxxx Q2:xxxx Q3:xxxx

Bus: 0123 4567 0123 4567

MBxx_M/QxBx/xxxxxxxx xxxxxxxx/xx/ S. B. ECC

Field
5

Field
1

Field
2

Field
3

Field
4

220 Chapter 10

mem3000
Notes on mem3000

Notes on mem3000
There is a dependency upon POST to initialize the memory system. This
test uses many of the CSR values from POST and does not reconfigure
the system. There are some exceptions in which CSR values need to be
changed in order for the test to run. In these cases, CSR values should be
returned to their previous value upon successful completion of the
subtest. If a failure occurs, these CSRs may not be returned to their pre-
test state in an attempt to save the failing state and configuration.

mem3000 currently uses the following algorithm for selecting processors
to be used in testing: A list is made of processors. Even numbered
processors under 16 are first, then odd numbered processors under 16,
followed by even then odd CPUs over 16. This ordered list is then used to
assign one processor per memory board.

The EWMBs must be installed in pairs (1 even for each odd). Three pairs
is not a valid configuration and POST will hardware deconfigure the
extra pair. Therefore, either 2, 4, or 8 EWMBs must be installed.

mem3000 uses memory that was enabled by POST to do the pre-test
initialization and encaching. Therefore, the Octant Mask parameters (6
and 7) are ignored during subtest init. As a result, lines that are not
tested may be re-initialized and used during the encaching sequence.

Subtest 150 and the class 3 subtests use memory interleave and thus
test over a range of EWMBs. The memory tested is that which was
enabled by POST in the Main Memory Map.

Subtest 150 and the class 3 subtests use coherent accesses to test
consecutive memory lines which are interleaved across EWMBs, buses
and banks. As a result, parameters 6 and 7 are ignored. When a failure
occurs, the failing 40-bit address can be used to determine which logical
row, bank, bus, and board was being accessed. The failing DIMM field
(QxBx) takes interleaving into account and reports the actual physical
Quadrant and Bus that failed.

Depending on the configuration, subtest 640 may not be able to test all
EWMBs in the node at once. If subtest 640 does not report the status of
all EWMBs the first time, deselect the EWMBs that were tested and
rerun the subtest.

Subtests in class 6 will produce HPMCs (indicated by the Test Controller
printing the # character). These are expected.

Chapter 11 221

11 Scan test

The Exemplar scan test (est) is a diagnostic utility that uses the system
scan hardware making it possible to perform connectivity tests and to
test gate array internal registers. The est utility runs on the SSP and
sends scan instructions to a given node by way of the Ethernet.

222 Chapter 11

Scan test
est utility test environment

est utility test environment
est is started on the SSP and is located in /spp/bin/est. The user has the
option of either starting up a user interface or having the est utility run
a script.

est works on one node at a time by sending scan instructions and data
and receiving the results over the diagnostic ethernet connection.

Since est has to communicate closely with the Utilities board, no other
diagnostic can be run at the same time. Also, while est is moving data
through the scan rings, the operating system can not be running.

est works on the JTAG scan rings throughout the system. Tests
provided are:

• Ring (test command r)—Moves data through the scan rings to make
sure the rings are connected and that basic scan hardware is
operational.

• Dc connectivity (command d)—Checks that wires on the boards
between scan devices are intact (no shorts or opens).

• Ac connectivity (command a)—Examines wires on the boards. Ac
tests look for timing problems between parts at full speed. If dc
connectivity patterns passed, but ac connectivity failed, the failure is
bound to be timing related.

• Gate array (command g)—Executes scan tests internal to selected
arrays. When these tests fail, the array usually has to be replaced.

These tests are listed in the order in which they should normally be run.

Control of utility board
To prevent unexpected shutdowns from hardware that is sensitive to
scan operations, est takes control of a power signal on the Utility board.
To control this signal, est must freeze some of the bits of the Utilities
board. Therefore, when est starts, it automatically performs the
id_verify operation and ring test (command r) on the Utility Ring
(ring 22). est then locks the bits to control the power signal. If the user
needs to run the id_verify or ring test function, scan operations will
occur in all scan rings except the Utility Ring.

Chapter 11 223

Scan test
est utility test environment

To perform ID and ring checks in the utility system, the user should turn
off the power control feature either though the command line argument
-p or through a runtime option command (power_control). The latter
should seldom occur, because est automatically runs these tests on the
utility scan path at start up and reports any errors found.

est exit and reset
To quit, est calls a script called est_exit. The default script performs a
do_reset function to reset the node under test. When the CTI cables are
tested, est directs est_exit and do_reset to reset the entire complex.
To accomplish this reset, est passes to the est_exit script a parameter
that indicates which node of the complex to reset. The script then hands
this parameter to do_reset which then performs the reset operation.

The default script resides at /spp/scripts/est_exit. If the user wishes to
run his own version, he should create the file in a local subdirectory
./scripts/est_exit. If est sees such a file, it will runs the local copy instead
of the default. The purpose of the default do_reset function is to make
sure that the utility system is restored in order to monitor
environmental conditions.

est user interfaces
est can be run from either a GUI or a command line interface. The est
GUI is described in “Running the est GUI” on page 224. The command
line interface is described in “Running est from command line” on
page 238.

224 Chapter 11

Scan test
Running the est GUI

Running the est GUI
The est GUI may be started at the command prompt. The following is
the est command usage:

/spp/bin/est [-option] node_number

As an example to bring up the GUI and test node 0, enter the following
command:

% /spp/bin/est -x 0

Table 83 on page 238 provides a complete list of options.

Figure 65 shows the est main window.

 Figure 65 est main window

The main window has two sections. The upper section has two rows of
buttons. The top row provides the user several options to control system
and test parameters, and the bottom row allows the user to run all
available tests. The lower section is the main window pane that displays
messages and test status.

Chapter 11 225

Scan test
Running the est GUI

The lower set of buttons allows the user to quickly and easily run the
scan tests in a wholesale fashion. The test can be modified to run fewer
patterns, to loop continuously or for a finite number of times, to test non-
default limits, etc.

Each button is explained in the following sections.

System Test button
Clicking the System Test button runs each set of tests in the following
order: ring tests, dc connectivity tests, ac connectivity tests, and gate
array tests. It is equivalent to entering the r, d, a, and g commands from
the command line interface.

ring button
Clicking the ring button runs the system scan tests on all rings and scan
paths using the default patterns. It is equivalent to entering r from the
command line interface. Most scan rings are defined in the IEEE 1149.1
JTAG specification.

dc button
Clicking the dc button runs only the dc connectivity tests using default
parameters. It is equivalent to entering d from the command line
interface.

ac button
Clicking the ac button runs only the ac connectivity tests using default
parameters. It is equivalent to entering a from the command line
interface.

ga’s button
Clicking the ga’s button runs only the gate array tests using default
parameters. It is equivalent to entering g from the command line
interface. When the Limit Test Patterns option is set in the Options
window, however, clicking the ga’s button runs the gate array tests with
the limited number of patterns specified. See “Options button” on
page 226.

226 Chapter 11

Scan test
Running the est GUI

Files button
Clicking the Files button opens pop-up menu with three selections:

• Execute Scripts—Runs a file containing est commands.

• Reset Log File—Clears the log file.

• Exit—Closes the est main window and exits the program.

Options button
Clicking the Options button opens pop-up menu with seven selections:

• Log_File—Generates a log file and stores it in /spp/data/est.log.

• Stop On Error—Causes the test(s) to halt whenever an error is
detected.

• Limit Test Patterns—Limits the number of test patterns so that the
test runs in approximately one-half the normal time. Test coverage
drops to approximately 90%.

• Limit Error Report—Limits the length of the error report to 10 errors.

• Normal Font Size—Prints status to the main window pane using the
standard font size.

• Large Font Size—Prints status to the main window pane using a
large font size.

• Show time—Prints current time and date.

Power button
Clicking the Power button opens pop-up menu with four selections:

• Upper—Sets the upper limit of the power supplies.

• Nominal—Sets the power supplies to their nominal values.

• Lower—Sets the lower limit of the power supplies.

• Status—Displays the current settings of the power supply voltages
(upper, normal, or lower). When this option is invoked, it displays
both the power supplies and clock settings.

Chapter 11 227

Scan test
Running the est GUI

Clocks button
Clicking the Clocks button opens pop-up menu with four selections:

• Upper—Sets the upper limit of the system clocks.

• Nominal—Sets the system clocks to their nominal values.

• External—Selects an external clock from the ECUB.

• Status—Displays the current settings of the power supply voltages
(upper, normal, or lower). When this option is invoked, it displays
both the clock and power supplies settings.

Details button
Clicking the Details button opens a pop-up menu with seven selections:

• P/F Each Pattern—Displays the number and the results of each
pattern in the test.

• Test File Msgs—Prints the pattern file, both instructions and data.
This option is primarily used for troubleshooting est.

• Show Scan Instr—Displays the instruction portion of the scan packet.
This option is primarily used for troubleshooting est.

• Show Scan Data—Displays the data portion of the scan packet.This
option is primarily used for troubleshooting est.

• Show SDP Data—Displays the scan data protocol portion of the scan
packet. This option is primarily used for troubleshooting est.

• Show GUI Commands—Displays each command in the main window
pane. This option is useful for writing test scripts.

• Enable GUI Commands—Toggles between enabling and disabling
GUI commands. This option is used with the Show GUI option to
assist in writing test scripts.

Misc. button
Clicking the Misc. button opens pop-up menu with nine selections:

• Goto Safe State—Places the system hardware in a safe state

• Verify Config—Compares returned test scan data from the JTAG
interface against the configuration file.

228 Chapter 11

Scan test
Running the est GUI

• Command Menu—Opens the command line window which allows the
user to enter est commands directly from the GUI system.

• Scan Debug Menu—Opens the debug window.

• Connectivity Test Menu—Opens the connectivity test window.

• Gate Array Test Menu—Opens the gate array test window. Gate
array tests use test vectors that have been generated for the certain
arrays (each array has multiple files associated with it).

• Sci Test Menu—Opens the SCI test window. The tests verify the
Coherent Toroidal Interface (CTI) cables between nodes.

• Abort—Stops the currently running test

Command line window
The est command line window allows the user the freedom to enter a
command directly from the est GUI system. Figure 66 shows the est
command line window.

 Figure 66 est command line window

To issue a direct command, click in the Command field, enter the
command and then press the Return key. est executes the command with
output going to the main window. Clicking the Accept button repeats the
command. The Clear button clears the command line. Clicking the
Cancel button closes the window.

Connectivity test window
The connectivity test window invokes the connectivity tests. With this
window, the user can select either the ac or dc test, the starting, ending,
or all patterns, and the test looping parameters. Figure 67 shows the est
connect window.

Chapter 11 229

Scan test
Running the est GUI

 Figure 67 est connectivity window

To select a connectivity test, click on either the dc or ac button in the
Connectivity Test panel.

In the Pattern panel, clicking the All button runs each test pattern. est
creates the patterns on the fly based on the number of testable wires in
the system. The user can also select the starting and ending patterns by
clicking the button next to the start field. Enter the appropriate data in
the Start and End fields. The Start and End options are normally used
when debugging a system or board.

The Loop panel has three check buttons:

• No—Disables looping.

• Continuous—Enables continuously test looping.

• Count—Enables test looping a finite number of times. To set the
number of times the test loops, click the Count button and enter the
number of loops in the Count field.

To start the test, click the Test button; to stop it, click the Abort Test
button.

Clicking the Cancel button closes the connectivity window.

230 Chapter 11

Scan test
Running the est GUI

Gate array test window
The gate array test window provides a means to test all gate arrays in
the Exemplar system. The window is simple to use.

Figure 68 shows the est gate array test window.

 Figure 68 est gate array test window

In the top panel, enter the following data in the appropriate fields:

• Board—Sets the location of the gate array.

• Type—Sets the type of gate array.

• Refdes—Sets the reference designation of the gate array.

• Jtag—Sets the associated JTAG identification.

When more than one field is used, est picks what to test by ANDing the
fields.

Chapter 11 231

Scan test
Running the est GUI

The next lower panel determines which and how many patterns are used
in the gate array test. The test normally uses all patterns, but, for
troubleshooting, you may set the starting and ending patterns, set the
maximum number of patterns (a range of patterns), or set a single,
custom pattern. Enter the following test pattern information in the
appropriate fields:

• Start—Sets the starting pattern.

• End—Sets the ending pattern.

• Pattern—Sets a custom pattern.

• Max—Sets the range of patterns to be used in the gate array test. The
default is to use all patterns.

In the next lower panel, click the appropriate test optimization buttons:

• None—No optimization.

• Some—Increased optimization.

• Max—Maximum test optimization.

The next lower panel controls the looping parameters:

• No—Disables looping. The test is only run once.

• Continuous—Enables continuous test looping. When running in
continuous looping, the test is halted by clicking the Abort Test
button.

• Count—Enables controlled looping. The number of loops is entered in
the Count field.

The gate array test window may also be loaded with predefined
parameters file. To load a file, click the Browse button and locate the
appropriate file in the browse window.

Clicking the large buttons in the gate array test window has the
following effect:

• Test—Starts the gate array test.

• Abort Test—Stops the test.

• Cancel—Closes the gate array test window.

232 Chapter 11

Scan test
Running the est GUI

Scan window
The scan window provides means of testing the system scan rings.
Figure 69 shows the est scan window.

NOTE For more information on scan rings and modes, see the IEEE 1149.1
JTAG specification.

 Figure 69 est scan window

The window has three panels: Ring, Scan, and Pattern.

Clicking the buttons in the Ring panel has the following effect:

• All—Tests all available rings in the system.

• Select—Allows the user to test a particular ring by entering the ring
number to be tested in the Ring Nbr field.

Chapter 11 233

Scan test
Running the est GUI

Clicking the buttons in the Scan panel sets the scan paths. All scan
modes can be selected or the test can be set up to test the individual
pathways as follows:

• All—Tests all scan modes.

• Bypass—Test the bypass ring.

• ID—Tests JTAG identification ring.

• Boundary—Tests the ring boundary.

• Internal—Test the internal ring.

In the Pattern panel, clicking the All button causes the test to use all
available patterns. Clicking the button next to a particular pattern
causes the test to only use that pattern (plus any others that are checked
at the same time). Clicking the Select button allows the user to specify
the test pattern by entering it in the Data field.

Clicking the large buttons in the scan test window has the following
effect:

• Test—Starts the scan test. The rings, scan parameters and patterns
selected in the scan window are invoked by this button.

• Test (All rings/modes)—Starts the scan test using all rings and
patterns regardless of what is selected in the scan window.

• Continuous Scan—Places the scan test in continuous looping.

• Abort Test—Stops the test.

• Show Id’s—Shows the JTAG IDs of all devices in the appropriate scan
rings.

• Cancel—Closes the scan test window.

234 Chapter 11

Scan test
Running the est GUI

SCI cable test window
The SCI cable test window provides a means to test the cables that
connect the scalable coherent interfaces between nodes. All cables are
tested by default, but an individual cable can be tested using this
window.

Figure 70 shows the est SCI cable test window.

 Figure 70 est SCI cable test window

In the top panel are two rows of fields and buttons that determine source
port (Driver) of the cable and the destination (Receiver). A third row
selects either the X or Y cable. For both the Driver and Receiver select a
node and EMB. Enter the desired node number in the node field. Click
the interface number (0 through 8). Click either or both the X-ring cable
or Y-ring cable.

The buttons in the lower portion of the window have the following effect:

• Test (all patterns)—Runs the SCI cable test using all test patterns.

• Test (dc)—Performs the continuity test on the cable.

• Test (dc_clk)—Performs the continuity test on the cable clock lines.

• Test (ac)—Performs dynamic test on the cable.

• Test all cables—performs full cable test suite on all interface cables.

CAUTION Before running the full cable test suite, refer to “SCI_all test” on
page 246.

• Cancel—Closes the window.

Chapter 11 235

Scan test
Running the est GUI

Help
Clicking the Help button opens pop-up menu with five topic selections:

• Overview

• Commands

• GUI

• Input Files

• Options

Clicking on one of these options opens the Help window shown in Figure
71. This window is initially blank.

To open the topic of interest, click the Browser button. This opens the
Help browser window shown in Figure 72. Double click on a topic listed
in the browser.

236 Chapter 11

Scan test
Running the est GUI

 Figure 71 est Help window

Chapter 11 237

Scan test
Running the est GUI

 Figure 72 est Help browser window

238 Chapter 11

Scan test
Running est from command line

Running est from command line
The following is the command line usage for est:

est [-options] <node_number>

For example, to test node 0, enter:

% est 0

est reads configuration information from files stored in /spp/data (e.g
node_0.cfg). These configuration files are automatically generated by
ccmd each time the system is powered up. While ccmd is running, it
prints its status to the console window. When database generation is
complete and no errors are reported, it writes the necessary
configuration files and est may be executed.

Table 83 shows est command line options.

Table 83 est command line options

Option Description

-v Print version and exit

-f <filename> Run a given script file

-l Do not generate a log file

-o <filename> Redirect the log file to the given filename

-x Open X windows GUI interface

-y Say “yes” if asked to take over a locked ECUB

-C Use old style configuration formats

-V VT100 command menu

-A Standalone; does not connect to node

-B Do not build database

-H Hardware mode on (default)

-N Hardware mode off

Chapter 11 239

Scan test
Running est from command line

Some examples of est usage are:

est -v

est -l -f my_script 0

est -o ./my_log_file 0

The est utility uses certain data and vector files located in the /spp/est
directory.

Unless disabled or redirected, the est utility will generate a log file,
est.log, and store it /spp/data/est.log. Any previous log file will be
renamed to est.log.old

-P Do not let est handle the MIB power control

-U <on |off> UTS support option

-Y Force est_config to be run

-Z Force est_config not to be run

Option Description

240 Chapter 11

Scan test
Running est from command line

Example of output when est is started:
% est 0

Excalibur Scan Test 1.0.0.2 1998/11/25 10:32:58 Steven Terry
.........................

.....
General EST Tests:
c ... compare id’s to config file
r ... scan ring test
d ... board level dc tests
a ... board level ac tests
g [options] [file] ... gate array tests

Special Scan Tests:
b ... bypass/id test
i ... print id’s found in design

EST Options:
F ... set option & debug flags
q ... quit nicely, ask first
qq ... quit nicely, don’t ask
Q ... quit, not so nice
h ... print this help message
v ... print EST version info
!cmd ... send the command to Unix (ex. “!ls patterns”)
>>

Chapter 11 241

Scan test
Running est from command line

Example output when using the est -h option:

% est -h

Excalibur Scan Test 1.0.0.2 1998/11/25 10:32:58 Steven Terry

usage: est [-options] [server] node [-cp port] [-sp port]

options:
 -h ... print this help message

 -v ... print the version of the program and exit

 -l ... turn OFF log file for this session

 -f <file> ... get commands from <file>

 -o <file> ... redirect log file to <file>

 -x ... X windows gui interface

 -y ... say "yes" if asked to take over a locked ecub

 -C ... use old style config file formats

 -V ... vt100 command menu

 -A ... stand alone; does not connect to node

 -B ... do not build database

 -H ... harware mode on (default)

 -N ... hardware mode off

 -U <on|off> ... UTS support option

 -Y ... force est_config to be run

 -Z ... force est_config not to be run

 -P ... do not let est handle the midplane’s power control

ports:

 -cp ... client port

 -sp ... server port

AC Connectivity test
The ac Connectivity test format is:

a [-s -p #]

Table 84 shows the options for the this test.

242 Chapter 11

Scan test
Running est from command line

Table 84 AC Connectivity test options

Bypass test
The Bypass test format is:

b

The Bypass test places the scan ring hardware into bypass mode.

DC Connectivity test
DC Connectivity test format is:

d [-s -p #]

Table 85 shows the options for the this test.

Table 85 Dc Connectivity test options

Gate Array test
The Gate Array test format is:

g [options] [pattern file]

Table 86 shows the options for the this test.

Option Description

-s Step mode (for debug purposes).

-p <number> Run pattern number only.

Option Description

-s Step mode (for debug purposes).

-p <number> Run pattern number only.

Chapter 11 243

Scan test
Running est from command line

Table 86 Gate Array test options

By default, the g command tests all arrays. When the -r, -b, -j, or -t
options are used, only arrays that meet all criteria are tested.

Gate array tests use test vectors that have been pregenerated for the
certain arrays (each array has multiple files associated with it). The -s,
-e, and -o options can be used to limit the number of patterns that are
run for each pattern file. The default is to run all patterns in each file.
While it may take more time to run all patterns, using options to limit
the number of patterns may result in a significant loss of test coverage.

The -o option controls how much parallelism takes place. There are
three levels:

• 0—No optimization.

• 1—Same parts on the same ring are tested together.

• 2—Identical rings are tested in parallel.

If an error is encountered during parallel testing, the following message
may appear:

*** errors found - must switch to serial testing ***

Option Description

-r <refdes> Test arrays with matching reference designator
value.

-b <board> Test arrays on given board. <board> may either be a
number or a name.

-j <jtag_id> Test arrays matching a jtag_id.

-t <type> Test an array type (For example, ERAC).

-s <number> Start with a given pattern number.

-e <number> End on a certain pattern number.

-m <number> Run a maximum of <number> patterns per file.

-o <number> Optimization level (0, 1, or 2) Two is the most
optimized and is the default.

244 Chapter 11

Scan test
Running est from command line

When an error occurs, parallel scans into the scan hardware may result
in bus conflicts on TDO pins. Therefore, est automatically stops using
parallel scans when errors happen.

Chapter 11 245

Scan test
Running est from command line

SCI test
The sci utility tests the Coherent Toroidal Interface (CTI) cables
between nodes. The term SCI (Scalable Coherent Interface) is often used
in place of the term CTI; the terms are interchangeable.

The usage of sci is as follows:

sci [driver] [receiver] ring test

where:

[driver] Refers to the node and memory board to which the CTI
cable is connected and from which the test data
originates.

[receiver] Refers to the node and memory board to which the
other end of the CTI cable is connected and receives
test data.

ring Refers to the CTI ring associated with the cable, either
x or y.

test Refers to the specific test: dc, dc_clk, ac. With the dc
test, the clock from the receiver node is used. The
dc_clk test derives its clock from the cable.

The following is an example of sci usage:

% sci 0 mb0l 1 mb0l y dc_clk

This command runs the dc_clk test on the cable connected between
node 0, memory board 1 (driver) and node 1, memory board 1 receiver.

246 Chapter 11

Scan test
Running est from command line

SCI_all test
The sci_all utility tests all SCI cables in a complex.

The usage of sci_all is as follows:

sci_all [test]

where:

test Refers to the specific test: dc, dc_clk, ac. With the dc
test, the clock from the receiver node is used. The
dc_clk test derives its clock from the cable.

If all cables are not connected or there is an unusual cable configuration,
sci_all will not work until the cable configuration files in /spp/est/
sci_tests have been updated:

CAUTION Use extreme care when modifying any est data files; damage to the
system may result. If you are not sure what to do, seek help.

To run est with modified data files, create a local directory and copy the
files to it. For the case of sci_all, create a local ./sci_tests directory and
then copy the sci cable files (shown above) to it. Edit the files and then
run est. est looks into the ./sci_tests directory for the files before the
/spp/est/sci_tests directory.

JTAG Identification test
The JTAG Identification test prints all JTAG IDs. the format is:

i

Margin commands
The Margin command for clocks and power format is:

m [-c | -p [supply] [value]]

The -c option specifies the clock, and the -p option specifies power.
These two options can not be used together; use either -c or -p.

When a value is not supplied, the current states are displayed.

By itself, m shows all margins.

The following are examples of margin command options:

Chapter 11 247

Scan test
Running est from command line

• -c high—Displays the upper clock limit.

• -p 1 nom—Sets the supply 1 margin to nominal.

There are four power supplies, 1 through 4.

Table 87 shows the valid values for clock and power.

Table 87 Valid values for clock and power supplies

est miscellaneous commands
This section gives the following useful commands entered at the est
prompt:

• ms—Puts all the scan hardware into a safe state.

• q—Quits, but asks the user first.

• qq—Quits without asking.

• script <file>—Runs a file containing est commands.

• v—Prints version information.

• F—Opens the flags submenu.

• t—Prints current time and date.

est run time option commands
est provides commands that update the main option settings that
control the run time operation of est tests. Each command uses one
command line argument, on or off. Table 88 lists these commands.

NOTE When in GUI mode, all of the above choices are available through the
options and details pull-down menus.

Clock Power

up or high up or high

nom nom

ext low

248 Chapter 11

Scan test
Running est from command line

Table 88 est runtime option commands

Command Description
Default

argument

log_file Turn on/off writing to the log
file.

On

stop_on_error Stops the test when an error is
detected.

On

limit_patterns Runs a limited set of patterns
when testing arrays. This runs
faster, but reduces coverage.

Off

limit_errors Limits to 10 the max number of
errors that will get printed. The
total error count is still printed.

On

pass_fail When enabled, it prints the
pass or fail status of each test
pattern.

Off

test_file_msgs Debug option that enables
printing of gate array pattern
file information.

Off

show_scan_instr Show scan instructions when
running tests.

Off

show_scan_data Show scan data when running
tests.

Off

show_sdp Show SDP ethernet
information when running est.

Off

power_control Affects whether or not est
takes control of the power-down
signal in the utility system.
Turning this feature off could
result in unexpected power
shutdowns, but that may be
needed for some special debug
efforts.

On

Chapter 11 249

Scan test
Running est from command line

est command flags and options
There are a number of flags or options that operate on and enhance the
est commands. Some of these flags and options perform the same
functions as the run time option commands.

To set these options, enter F at the est prompt. This invokes the flags
submenu. To exit, press return at the flags prompt. This returns the main
est prompt.

Some of the more useful options are:

• l—Limits the number of internal array patterns executed by the g
command. This has the affect of decreasing coverage to approximately
90 percent.

• s—Stops testing when an error is detected.

• A [number]—Limits the number of ac connectivity tests.

Setting a limit of zero or less results in all patterns being used.

• D [number]—Limits the number of dc connectivity tests.

• E—Shows SDP packets transferred across the ethernet.

• P—Controls whether or not the pass/fail status of individual patterns
are displayed.

Script files
There are two ways of running script files: from the command line (-f
<filename>) or from the est prompt. From the command line, est
executes the instructions listed and when finished, displays the est
prompt. To cause est to quit when the script is finished, put q at the end
of the script file.

The script command reads est commands from an ASCII file and runs
those commands. The following rules apply to the file:

• The file must have only one command per line.

• Command syntax must be the same as entered at the est prompt.

• Comments lines must start with a # sign.

250 Chapter 11

Scan test
Running est from command line

An example file might contain the following lines:

check the rings
r
show pattern pass/fail steps
F P
#limit dc testing to 3 patterns
F D 3
#do dc testing
d
q

Chapter 12 251

12 Utilities

This chapter details most of the diagnostic utilities which include:

• address_decode

• arrm

• autoreset

• console

• consolebar

• cpu_hang

• dcm

• dfdutil

• dump_rdrs

• fwcp

• fw_init and fw_install

• get_node_info

• hard_logger

• lcd

• load_eprom

• opie

• pciromldr

• pim_dumper

• set_complex

• soft_decode

• sppconsole

252 Chapter 12

Utilities

• tc_init

• tc_ioutil

• tc_show_struct

• Version utilities

• diag_version

• flash_info

• ver

• Event processing

• event_logger

• log_event

• Miscellaneous tools

• fix_boot_sector

• kill_by_name

Chapter 12 253

Utilities
address decode

address decode
address_decode decodes 40-bit virtual address using the current
memory configuration to resolve the physical node, SMAC, row, bus, and
bank.

It has the following format:

address_decode <40-bit address in hex>

In order to determine the current memory configuration,
address_decode invokes some sppdsh commands to read certain CSR
values so that it can take into account the board mapping, row mapping,
interleave values, and DIMM sizes present in the system. Consequently,
it must be run on a SSP that can access the node via sppdsh.

address_decode reports an error if the address entered does not
exist.

Example of address_decode use:

% address_decode 0x010f000020

In this example, the address decodes the following

• Node ID: 0

• SMAC: 7

• Bus: 3

• Row: 2

• Bank: 1

Example of address_decode error:

% address_decode 0x01ff000020

Detected non-existent row!

Decode failure

254 Chapter 12

Utilities
AutoRaid recovery map (arrm)

AutoRaid recovery map (arrm)

NOTE arrm has been replaced by the ARDIAG test module that is invoked by
tc_ioutil on the SSP. See “opie” on page 292 for a description of how to
use this utility.

Chapter 12 255

Utilities
autoreset

autoreset
autoreset enables or disables automatic reset after an error. It
determines the behavior of ccmd when it first encounters an error
condition. If an error exists on the system when autoreset is enabled,
then ccmd does not reset the system. Subsequent errors will force ccmd
to reset the system.

autoreset has the following format:

autoreset [<chk> | <complex_name <on|off>]

where:

on—Enables automatic reset after an error on the complex specified

off —Disables automatic reset after an error on the complex specified

chk—Prints current state of the automatic reset indicators.

autoreset allows the user to specify whether ccmd should
automatically reset a node after a hard error and after the hard logger
error analysis software has run. The automatic reset occurs if a /spp/
data/.ccmd_reset file does not exist.

As an example, the output of the chk option on complex_name hw2a
looks like:

Autoreset for hw2a is enabled.

or

Autoreset for hw2a is disabled.

256 Chapter 12

Utilities
console

console
console is a console server client program that manipulates console
terminals remotely or by polling running conserver(8) daemons for
status information.

console queries the user for the root password before granting
interactive access to a console (on a non-trusted system), because such a
session may provide single-user access.

In the non-interactive mode console outputs only the requested
information.

console has the following format:

console [-rv] [-AFSafs] [-e esc] [-M server] host

console [-dDqQ] [-v] [-M server] host

console [-v] [-huVwx]

Table 89 shows console options.

Table 89 console options

-a Access a console with a two-way connection (this is
the default).

-d Display daemon versions. The console client connects
to each server to request its version information. The
uppercase variant of this option only requests the
primary server’s version.

-e esc Set the initial two-character escape sequence to those
represented by esc. Any of the forms output by the
cat -v option are accepted. The default value is ^Ec.

-f Same as -a except it forces any existing connection
into spy mode.

-h Display a brief help message.

-M server Poll server as the primary server rather than the hard
coded default (console.cc.purdue.edu).

Chapter 12 257

Utilities
console

The -A, -F, or -S options have the same effect as their lower case variants.
In addition, they each request the last 20 lines of the console output after
making the connection. Any default (-a) connection is dropped to spy
mode if someone else is attached.

Escape Sequences
Connections can be controlled by a two-character escape sequence,
followed by a command. The default escape sequence is control-E c (octal
005 143). Table 90 shows describes each escape sequence command.

Table 90 console escape sequence commands

-q Requests that the server daemon quit (shutdown). A
password is sent in the protocol stream. If none is
required for the local host to shutdown the server,
press return. The uppercase variant of this command
acts only on the primary server.

-r Request a raw connection to the group control virtual
console. This is only useful for learning the interactive
sequence.

-s Requests a read-only (spy mode) connection. In this
mode, all the escape sequences (below) work or report
errors, but all other keyboard input is ignored.

-V Output the version of the console client program.

-v Invoke verbose mode when building the connection(s).
Use this option in combination with any of “show” (-u,
-w, or -x) options for added benefit.

-u Show a list of consoles and the users on each.

-w Show a list of all connections to all consoles.

-x Show a list of consoles and devices.

a switch to attach mode

c toggle flow control (don't do this)

d down the current console

258 Chapter 12

Utilities
console

If any other character is hit after the escape sequence, all three
characters are discarded.

Note that a line break or a down command can only be sent from a full
two-way attachment.

To send the escape sequence through the connection, the outer escape
sequence must be redefined.

In the -u output, the login <none> indicates no someone is viewing that
console, the login <spies> indicates that no one has a full two-way
attachment. When no one is attached to a console, its output is cloned to
the stdout of the server process.

e change the escape sequence to the next two characters

f force a switch to attach mode

l1 send a 3 second serial line break (might halt a Sun)

o reopen the line to clear errors (silo overflows)

r replay the last 20 lines of output

s switch to spy mode

u show other users on this port

v show the version of the group server

w who is using this console

x examine this group’s devices and modes.

z suspend this connection

? display list of commands

^I toggle tab expansion

^J continue, ignore the escape sequence

^R replay the last line only

\. disconnect

; provide a new login or shift to a new console

+(-) be more (less) free with new lines

Chapter 12 259

Utilities
console

Example of console
Using the -u option produces output similar to the following:

% console -u

l18 l l.
dumb up <none>
expert up ksb@mentor
tyro up <spies>
mentor up <none>
sage up fine@cis

<none> indicates no one is viewing “dumb” or “mentor.”

<spies> indicates only read-only connections exist for tyro; other
login@host entries are the currently attached “sage” and “expert.”

Using the -w options produces the following output:

% console -w

l l l.
ksb@extra on expert Fri Feb 15 16:40:36 1991
file@cis on sage Thu Feb 14 1:04:10 1991
dmr@alice spy tyro Thu Feb 7 10:09:59 1991

The following -e option requests a connection to the host ``lv426'' with
the escape characters set to “escape one.”

% console -e *(lq^[1*(rq lv426

260 Chapter 12

Utilities
consolebar

consolebar
The consolebar utility is an X application that provides a simple
interface capable of starting console windows to all V2500/V2600 nodes
configured on the SSP. It has the following format:

consolebar [-display displayname]

consolebar retrieves the list of configured nodes and displays the node
IDs, grouped by complex. When the push-button for a node is pressed, an
xterm is started and the sppconsole program is run against the
specified node.

To start consolebar from the SSP root menu, select the consolebar
menu item.

To start from a shell (local or remote), ensure that your DISPLAY
environment variable is set appropriately before starting consolebar.

For example:

$ DISPLAY=myws:0; export DISPLAY (sh/ksh/sppdsh)
% setenv DISPLAY myws:0 (csh/tcsh)

As another example, use the -display start-up option:

consolebar -display myws:0

NOTE For shells run from the SSP desktop, the DISPLAY variable is set (at
shell start-up) to the local SSP display.

Chapter 12 261

Utilities
cpu_hang

cpu_hang
cpu_hang can be used to identify the failing CPU in a system that has
completely hung due to a malfunctioning CPU. The assumptions before
running this script are:

• The system is completely hung.

• A processor is at fault.

• The internal scan ring still works.

The scan information retrieved is written to a log file in the /tmp
directory called cpu_hang.log. If this file already exists, the new data is
appended to it. Each time the log is updated a timestamp is inserted.

The script also writes the internal scan state of the node to a log file
called scan_dump.log in the /tmp directory. If this file already exists, it is
archived to scan_dump.log.old in the same directory.

cpu_hang uses the following format:

cpu_hang -h <node] >

where:

The -h prints a description of the methods used to isolate a defective
CPU, and <node> is the node number (defaults to 0).

Fault isolation methods
cpu_hang uses three methods to try to identify the processor that first
hung. None of these methods is foolproof, because all of the scenarios
they try to identify can happen in a working system under the right
conditions. These methods do, however, provide a good basis for finding
the processor at fault.

Outstanding Coherency requests
In order to maintain data coherency between processors, packets are
transmitted among processors to control sharing of data. If a processor
hangs, its queue of incoming coherency requests may become backed up.
This can often be a tell-tale sign identifying which processor originally
hung. However, keep in mind that on a busy system, occasionally the
queue backs up even under normal circumstances.

262 Chapter 12

Utilities
cpu_hang

Outstanding read/write short requests
When a write short or read short request is sent to a processor, it is
required to complete that request before responding to any other
requests. If the processor hangs while a write/read short request is
outstanding, it leaves evidence of this in the r_csr_busy scan field.

Revision 2.0 PCXW timeout condition

Revision 2.0 of the processor has a bug that prevents a processor that has
timed out from executing the HPMC handler. Instead, after a timeout
has occurred, the processor hang. However, cpu_hang can not determine
the actual revision of the processor. The user should determine which, if
any, processor boards have revision 2.0 PCXW’s installed. This bug has
been fixed in revision 2.1 of PCXW.

Example using cpu_hang
To attempt to isolate the failing processor in a hung system the following
command could be used:

 cpu_hang 0

The following is an example of what is printed to the screen. Note that
the detailed scan information does not print to the screen, but is
available in the log file in /tmp/cpu_hang.log.

Turning off clocks to Node 0 ...
Scanning SPAC’s on Node 0 for pertinent data ...
Evaluating coherency queue on each CPU ...
 CPU(s) potentially responsible for hang: PB1L_A
Evaluating outstanding TLB count on each CPU ...
Evaluating outstanding write/read short status on each CPU ...
Evaluating timeout status on each CPU ...

In this example, the coherency queue was full on processor PB1L_A,
therefore, reporting PB1L_A as the possible originator of the hang.

Chapter 12 263

Utilities
dcm

dcm
dcm dumps the boot configuration map information for the specified
node. There are two main reporting modes; one for general hardware
configuration and one for the DIMM type.

The general hardware mode reports processors, ASICs, and memory size
information. The DIMM type mode provides pass/fail tests for specific
DIMM types, and a general DIMM type report option.

dcm uses following format:

dcm [-d <80|88|all>] <node id> <node id> ...

-d 80 checks to see if only 80-bit DIMMs are installed.

-d 88 checks to see if only 88-bit DIMMs are installed.

-d all dumps the status of all installed DIMMs, 80- or 88-bit.

This option returns an exit code: a zero value indicates dump was
successful and a one value indicates the dump failed.

<node id> may be a node number or IP name.

When invoked as dcm <node id>, dcm returns 0 and prints a table
with the following format for a node with eight processors, eight SPACs,
one SIOB, and EWMBs half-populated with 128-Mbyte DIMMs:

264 Chapter 12

Utilities
dcm

Output table using dcm <node_id>

Acquiring Boot Configuration Map...
 Stingray Configuration Map Dump: Node: 0 (hw2a-0000)
 ===
 VERSION: 1.0 compiled: 1998/12/16 18:35:00
 CheckSum:0xf407a073
 Boot Config Map Size:164 words
 POST Revision:1.0
CPUs (Rev, ICache, DCache Size in MegaBytes)
==
PB0L_A PASS (2.0, 0.50, 1.00) PB0L_B EMPTY
PB0R_A EMPTY PB0R_B EMPTY
PB1R_A PASS (2.0, 0.50, 1.00) PB1R_B EMPTY
PB1L_A EMPTY PB1L_B EMPTY
PB2L_A PASS (2.0, 0.50, 1.00) PB2L_B EMPTY
PB2R_A EMPTY PB2R_B EMPTY
PB3R_A PASS (2.0, 0.50, 1.00) PB3R_B EMPTY
PB3L_A PASS (2.0, 0.50, 1.00) PB3L_B PASS (2.0, 0.50, 1.00)
PB4L_A PASS (2.0, 0.50, 1.00) PB4L_B EMPTY
PB4R_A EMPTY PB4R_B EMPTY
PB5R_A PASS (2.0, 0.50, 1.00) PB5R_B EMPTY
PB5L_A EMPTY PB5L_B EMPTY
PB6L_A PASS (2.0, 0.50, 1.00) PB6L_B EMPTY
PB6R_A EMPTY PB6R_B EMPTY
PB7R_A PASS (2.0, 0.50, 1.00) PB7R_B EMPTY
PB7L_A PASS (2.0, 0.50, 1.00) PB7L_B PASS (2.0, 0.50, 1.00)
SPACs
=====
0L - PASS
P1R - PASS
P2L - PASS
P3R - PASS
P4L - PASS
P5R - PASS
P6L - PASS
P7R - PASS
SAGAs
=====
IOLF_B - PASS
IOLR_B - PASS
IORR_B - EMPTY
IORF_B - PASS
IOLF_A - PASS
IOLR_A - PASS
IORR_A - EMPTY
IORF_A - PASS
SMACs
=====
MB0L_M - PASS
MB1L_M - PASS
MB2R_M - EMPTY
MB3R_M - EMPTY
MB4L_M - EMPTY
MB5L_M - EMPTY
MB6R_M - EMPTY
MB7R_M - EMPTY
STACs
=====
MB0L_T - DECONFIG
MB2R_T - EMPTY
MB3R_T - EMPTY
MB4L_T - EMPTY

Chapter 12 265

Utilities
dcm

MB5L_T - EMPTY
MB6R_T - EMPTY
MB7R_T - EMPTY
Memory:
=======
 Physical: L=128MB, M=64MB, S=16MB Logical: l=128MB, m=64MB, s=16MB
 (If logical memory not specified, then it matches physical memory size)

 * = Software Deconfigured - = Not In Use
EWMB0:
======
EWMB0: Q0B0 S/S Q1B4 -/- Q2B0 -/- Q3B4 -/-
EWMB0: Q0B1 S/S Q1B5 -/- Q2B1 -/- Q3B5 -/-
EWMB0: Q0B2 S/S Q1B6 -/- Q2B2 -/- Q3B6 -/-
EWMB0: Q0B3 S/S Q1B7 -/- Q2B3 -/- Q3B7 -/-
EWMB1:
======
EWMB1: Q0B0 S/S Q1B4 -/- Q2B0 -/- Q3B4 -/-
EWMB1: Q0B1 S/S Q1B5 -/- Q2B1 -/- Q3B5 -/-
EWMB1: Q0B2 S/S Q1B6 -/- Q2B2 -/- Q3B6 -/-
EWMB1: Q0B3 S/S Q1B7 -/- Q2B3 -/- Q3B7 -/-

When invoked with dcm -d 80 <node id>, dcm returns 0 if all
installed DIMMs are 80-bit single-node DIMMs. dcm returns a 1 if one or
more 88-bit multinode DIMMs are detected.

When invoked with dcm -d 88 <node id>, dcm returns 0 if all
installed DIMMs are 88-bit single-node DIMMs. dcm returns a 1 if one or
more 80-bit multinode DIMMs are detected.

When invoked with dcm -d all <node id>, dcm returns 0 and
prints a table with the following format for a node with two EWMBs
installed that were half-populated with 88-bit DIMMs:

266 Chapter 12

Utilities
dcm

Output table using dcm -d all <node_id>
Stingray Configuration Map DIMM Info: Node: 0(hw2b-0000)
 ===
 VERSION: 0.8.0.1 compiled: 1998/10/23 14:34:01
Memory Type:
============
 Physical: 88=Multi node 88-bit DIMM, 80=Single node 80-bit DIMM
 (Only physical DIMM type is reported.)
 * = Software Deconfigured - = Not In Use
EWMB0:
======
EWMB0: Q0B0 88/88 Q1B4 88/88 Q2B0 -/- Q3B4 -/-
EWMB0: Q0B1 88/88 Q1B5 88/88 Q2B1 -/- Q3B5 -/-
EWMB0: Q0B2 88/88 Q1B6 88/88 Q2B2 -/- Q3B6 -/-
EWMB0: Q0B3 88/88 Q1B7 88/88 Q2B3 -/- Q3B7 -/-
EWMB1:
======
EWMB1: Q0B0 88/88 Q1B4 88/88 Q2B0 -/- Q3B4 -/-
EWMB1: Q0B1 88/88 Q1B5 88/88 Q2B1 -/- Q3B5 -/-
EWMB1: Q0B2 88/88 Q1B6 88/88 Q2B2 -/- Q3B6 -/-
EWMB1: Q0B3 88/88 Q1B7 88/88 Q2B3 -/- Q3B7 -/-

dcm returns a negative number for all scan-related failures.

Chapter 12 267

Utilities
dfdutil

dfdutil
dfdutil is a stand-alone off-line utility that downloads firmware to
SCSI devices including disks, arrays, and fibrechannel devices such as
SCSI MUX and fibrechannel arrays.

The firmware image(s) are contained in a Logical Interchange Format
(LIF) volume on the SSP at /spp/firmware/DFDUTIL.LIF. The raw
(usually binary) firmware image of one or more devices is contained in
the LIF filesystem. dfdutil reads this file when it initializes and
examines header of each file for a standard firmware header. The
firmware header is required for download capability. Since most HP
firmware distributions are already packaged in this format, the
procedure for putting a raw binary firmware image into the proper
format for dfdutil is not covered in this document.

NOTE DFDUTIL.LIF must have world read permissions to be accessed by
dfdutil.

To load and run dfdutil, enter the following command at the SSP
prompt:

tc_ioutil <node id or all> dfdutil.fw

To run dfdutil on a specific complex, enter the following command at
the SSP prompt:

tc_ioutil <complex name> <node number or "all"> dfdutil.fw

This command issues a system reset. The test controller bootstrap loads
the executable image, dfdutil.fw, from the SSP file /spp/firmware/
dfdutil.fw and executes it.

Once started, dfdutil loads the file DFDUTIL.LIF from the SSP and
scans all SCSI and Fibrechannel busses on the system.

268 Chapter 12

Utilities
dfdutil

Example of dfdutil output when loading
**
*** DFDUTIL ***
*** ***
*** (C) Copyright Hewlett-Packard Co. 1998 ***
*** All Rights Reserved ***
*** ***
*** This program may only be used by HP support personneland ***
*** those customers with the appropriate Class license or ***
*** Node license for systems specified by the license. HP ***
*** shall not be liable for any damages resulting from misuse ***
*** or unauthorized use of this program. This program ***
*** remains the property of HP. ***
*** ***
*** Version 4.4.0.0 ***
*** ***

Please wait while I check all the firmware files...
Please wait while I check all the firmware files...
Opening file /spp/firmware/DFDUTIL.LIF
DNS server : 15.99.111.99 (f636f63)
NFS ip : 15.99.111.99 (f636f63)
Mounting : /spp/ - mounted.

 Indx Path Product ID Bus Size Rev
 ---- ------------------ ------------------------- ------- ------ ------
 0 5/1:0.6.0 SEAGATE ST15150W SCSI 4095 HP10
 1 7/1.8.0.255.0.0.0 HP HPA3308 FC 0 d373
 2 7/1.8.0.0.0.14.0 DGC DISK FCMUX 4006 0860
 2.0 ^array^ SEAGATE ST15150N SCSI 4024 HP02
Legend:
Indx = Index number used for referencing the device
Rev = Firmware Revision of the device
Note: Due to different calculation mthods used, the size
 of the device shown is only a rough approximation.
 File name Intended Product ID Rev. Size
 ---------------- ----------------------------- ------ -----
 R18CUDA9 SEAGATE ST19171W 0018 257888
 R23CUDA9 SEAGATE ST19171W 0023 257888
 ST34371W84 SEAGATE ST34371W 0484 276512
 ST39173WD5 SEAGATE ST39173W HP05 303360
 ST39173WD8 SEAGATE ST39173W HP08 303360
 ST15150W23 SEAGATE ST15150W 0023 261632
 ST15150W22 SEAGATE ST15150W 0022 261632
 DVD316 PIONEER DVD303 0016 135168
 DVD317 PIONEER DVD303 0016 135168
 DVD316H PIONEER DVD303 0016 330679
 DVD317H PIONEER DVD303 0016 331354
 MUX373 HP FC-SCSI_MUX d373 2162516
 MUX40_1 HP FC-SCSI_MUX 40_1 2162516

Legend:
File name = name of the firmware file
Intended Product ID = firmware file’s intended product name
Rev. = firmware Revision of the firmware file
Size = exact byte size of the firmware image
DFDUTIL>

Chapter 12 269

Utilities
dfdutil

The output above shows the two main data structures used by this
program: the bootable device table and the LIF file table. It ends with the
DFDUTIL> prompt for a built-in command line interpreter. The bootable
device table shows the drives and array controllers to which the operator
can send a download, and the LIF file table shows the firmware files that
are available to be downloaded.

dfdutil bootable device table
The descriptions of the fields in the bootable device table are as follows:

• Index—Specifies in the DOWNLOAD command which device is used to
download firmware to. FRUs in an array (the individual drives) are
shown with a subindex (X.Y), where X is the array controller, and Y is
the index of the physical drive. Array drives must be specified with
the X.Y notation.

• Path—Specifies the hardware path to the drive. There are two
possibilities: fibrechannel or direct attach SCSI. In the case of directly
attached SCSI, the path is formatted as a/b:c.d.e. Each letter in
the path is defined as follows:

• a—SAGA number

• b—slot number

• c—path level (always 0)

• d—target ID

• e—LUN number

In the case of Fibrechannel bus, there are two possibilities: direct
attach fibrechannel or fibrechannel SCSI MUX. The path of the direct
attach fibrechannel is formatted as a/b.c.d.255.e.f.g with the
definition of the letters as follows:

• a—SAGA number

• b—slot number

• c—path level (always 0)

• d—always 8 for FC storage

• e—upper 4 bits of loop address

• f—lower 4 bits of loop address

270 Chapter 12

Utilities
dfdutil

• g—LUN number

If the device is attached to an FC SCSI MUX, the path is formatted as
a/b.c.d.e.f.g.h. with the letter definitions as follows:

• a—SAGA number

• b—slot number

• c—path level (always 0)

• d—always 8 for fibrechannel storage

• e—loop address (fibrechannel loop address of the MUX to which
this device is attached)

• f—backside SCSI bus number

• g—target number

• h—LUN number

NOTE Array drives (FRUs) are not listed with an absolute hardware path since
they are not directly accessible from the SCSI bus. They are listed with
the special token "^array^" in the path field.

• Vendor ID—Specifies ID read from the drive in the inquiry data.

• Product ID—Specifies the ID strings read from the device using the
INQUIRY command.

• Bus Type—Specifies how the devices is connected to the node. Either
direct attach SCSI, direct attach Fibre Channel Loop on the back of a
FC SCSI Mux.

• Size—Specifies the approximate unformatted capacity in megabytes
for a disk drive or the approximate formatted capacity for an element
of an array.

• Revision level—Specifies the revision reported by the device in the
inquiry data.

dfdutil LIF file table
The descriptions of the fields in the LIF file table are as follows:

• Filename—Specifies the name of the file in the LIF volume. The
operator specifies this name when issuing download commands to the
devices.

Chapter 12 271

Utilities
dfdutil

• Intended Product ID—Specifies the concatenation of the vendor ID
and the product ID for the drive or array for which this file is
intended. (If this data does not match the vendor ID and product ID of
a drive in the bootable device table, a download will not be allowed.)

• Rev.—Specifies the firmware revision of the file. This is also setup
during firmware packaging.

• Size—This is the size in bytes of the file not including the file header.

dfdutil commands
The DFDUTIL> prompt indicates that the built-in command line
interpreter is waiting for a command.

The commands available to this command line interpreter are:

• DOWNLOAD <filename> <index>

• DISPMAP <disk index>

• DISPDILES

• LS

• RESET

• UTILINFO

• NODE <node number>

• HELP <command>

DOWNLOAD command
Use the DOWNLOAD command to download firmware to a particular
device. DOWNLOAD transfers the contents of a particular firmware file to a
device. It prompts the user for any arguments that were not specified on
the command line.

NOTE Once the download begins, do not interrupt the process, or the devices to
which the firmware is being loaded could be rendered useless.

The syntax for the DOWNLOAD command is:

DISMAP <filename> <disk index>

272 Chapter 12

Utilities
dfdutil

filename must match one of the file names in the LIF file table, and
index must match one of the index numbers in the bootable device list
(displayed when the program starts). If the file specified does not have
the same vendor and product ID as the device whose index number is
specified, an error message will be issued to the operator and the
download will be aborted.

As an example, to download firmware to the SCSI MUX HPA3308 (the
mux controller firmware), enter the following command line:

DFDUTIL> download MUX1 0

dfdutil prompts the user for confirmation since FC-SCSI_MUX does
not match the product ID of the device, HPA3308.

To download to FRUs in an array, enter the following command line:

DFDUTIL> download firmware_file_name 2.1

DISPMAP command
The DISPMAP command displays a list of all devices connected to the
system. The information displayed includes:

• Index number

• Product identification

• Device size

• Index number

• Firmware revision

The syntax for the this command is:

DISPMAP <disk index>

The user may enter the index number of a single device; using no index
number causes DISPMAP to list all devices.

This command will display the bootable device table displayed when
dfdutil is started. If the optional argument [index] is specified, then
only the information for the given index number will be displayed, not
the entire table. This display may not reflect any downloads that may
have been done since the program was started.

The following two examples show output using no index number and one
index number, respectively.

Chapter 12 273

Utilities
dfdutil

Example output of dfdutil DISPMAP command with no index number
Indx Path Product ID Bus Size Rev
---- -------------- ------------------------------- ------ ------ ----
0 2/0/1.2.0 QUANTUMLP270S disc drive SCSI 258 MB 5909
1 2/0/1.6.0 QUANTUMLP270S disc drive SCSI 258 MB 1234

Legend:
Indx = Index number used for referencing the device
Rev = Firmware Revision of the device

Note: Due to different calculation methods used, the size
 of the device shown is only a rough approximation.

DFDUTIL>

Example output of dfdutil DISPMAP command with one index number
Indx Path Product ID Bus Size Rev
---- -------------- ----------------------------- ------ ------ ----
1 2/0/1.6.0 QUANTUMLP270S disc drive SCSI 258 MB 1234

Legend:
Indx = Index number used for referencing the device
Rev = Firmware Revision of the device

Note: Due to different calculation methods used, the size
 of the device shown is only a rough approximation.

DFDUTIL>

DISPFILES command
The DISPFILES command displays a list of all available firmware files
found on a LIF device. The command displays:

• File name

• Intended product identification

• New revision number

• Size of firmware (not file size)

The syntax for this command is:

DISPFILES

The user may enter the index number of a single device; using no index
number causes DISPFILES to list all devices.

274 Chapter 12

Utilities
dfdutil

LS command
The LS command displays information about the LIF volume. The
display is similar to that displayed by a lifls -l command. This
command is used for writing and maintaining dfdutil.

RESET command
The RESET command only resets the internal variables of the dfdutil
utility by resetting all variables and lists of original values. It rescans
each bus to detect any devices. It does not reset any SCSI buses.
Therefore, the resets display produced may not reflect any downloads
that may have been done since dfdutil was started.

The syntax for this command is:

RESET

UTILINFO command
This command provides general information about the use of dfdutil.

NODE command
dfdutil uses the networked console feature to allow all command input
and output to be sent through the console connected to node 0. The NODE
command allows the user to move execution to another node for firmware
download to the desired device. The command causes dfdutil to rescan
the device bus in the node to which the user is switching. The syntax for
this command is:

NODE <node number>

where <node number> is the appropriate node ID (0, 2, 4, or 6).

Typically, bootable devices are connected to node 0 and the NODE
command is not needed.

HELP command
The HELP command provides useful information about dfdutil
commands.

The syntax for this command is:

HELP <command name>

Chapter 12 275

Utilities
dfdutil

Entering HELP without a command name displays a list of all available
dfdutil commands. Entering the specific command name after HELP
outputs specific information about the command.

Notes and cautions about dfdutil
This section presents some limitations and cautions concerning
dfdutil.

Backup before downloads
Some firmware downloads may affect formatting resulting in the loss of
some or all the data on the disk.

CAUTION Back up all disks before loading firmware onto them.

Halting the system during downloads
Halting the system during a download may leave the drive being
downloaded in an unusable state.

CAUTION Never halt the computer, power cycle it, or in any way interrupt
operation during a download.

Power cycling after a download
Some disk drives store downloaded code to nonvolatile memory but do
not load and run this code until after the next bus reset or power cycle.

NOTE Power cycle the system and all cabinets or racks containing drives that
have been downloaded after all downloads have been completed. Restart
dfdutil and examine the revision levels in the bootable device table to
make sure that all downloads were successful.

If attempting to download a corrupted or inappropriate firmware file to
some drives, the drives drop the downloaded data and return good
status. For this reason, dfdutil can not always determine if a download
did, in fact, complete successfully.

276 Chapter 12

Utilities
dfdutil

Shared SCSI Buses
If dfdutil is running on a system which shares any of its SCSI busses
with another system or systems, the other system or systems must be
halted while this program is running. This program can not determine
that a bus is shared, so the operator must determine if any bus is shared
and halt the other computer(s).

Shared Nike Arrays

If dfdutil is running on a system which shares a Nike array with
another system, it is not possible to update firmware on the Nike’s SP
boards or drives without manual intervention. This program can detect
that the array is shared and display a message to pull the SP board
connected to the other system and reinsert the board after the
download(s) is complete.

Nike and Galaxy drive download to the individual disks in the array is
not possible with two active SP controllers in the cabinet. One SP must
either be physically removed or shut down via remote maintenance
software (accessed via the serial port).

Chapter 12 277

Utilities
dump_rdrs

dump_rdrs
The dump_rdrs utility automatically resets the specified node and
directs it to boot the RDR dumper firmware module. Once it detects that
the RDR dumper firmware has completed, it scans out the results and
places a formatted RDR dump of each processor in /spp/data/<complex>/
nodeX.cpuY.rdrs. X is the node number specified and Y is a processor
number from 0 - 31.

Example of dump_rdrs utility:

dump_rdrs <node id>

278 Chapter 12

Utilities
fwcp

fwcp
fwcp is an OBP command that upgrades system firmware. A single
firmware package may be loaded by the following command:

ok fwcp <filename> <module name>

To load all system firmware packages, use the following master
download script:

source /core@f0,f0000000/
lan@0,d30000;15.99.111.99:/spp/scripts/dl-diags

The master download script output is shown below:

v-c-t:/spp/firmware$ cat /spp/scripts/dl-diags
fwcp 15.99.111.99:/spp/firmware/pdcfl.fw PDCFL
fwcp 15.99.111.99:/spp/firmware/post.fw POST
fwcp 15.99.111.99:/spp/firmware/test_controller.fw TC
fwcp 15.99.111.99:/spp/firmware/cpu3000.fw CPU3000
fwcp 15.99.111.99:/spp/firmware/io3000.fw IO3000
fwcp 15.99.111.99:/spp/firmware/mem3000.fw MEM3000
fwcp 15.99.111.99:/spp/firmware/diodc.fw DIODC
fwcp 15.99.111.99:/spp/unsupported/rdr_dumper.fw
RDR_DUMPER
fwcp 15.99.111.99:/spp/firmware/entry2500.pdc /flash@0,0
fwcp 15.99.111.99:/spp/firmware/obp2500.pdc OBP

Chapter 12 279

Utilities
fw_init and fw_install

fw_init and fw_install
fw_init provides an automatic means for downloading firmware to each
node and initializing certain data structures in NVRAM. Using this
script prevents problems that could occur when executing this procedure
manually. The format if fw_init is as follows:

fw_init [-c complex name]

-c complex name specifies the complex to update.

For example:

fw_init updates all nodes in the current complex.

fw_init -c hw2a updates all nodes in the complex hw2a.

If the -c option is not specified, then the complex_name value is
obtained either from an environment variable of the same name or it
defaults to mu.

fw_init first loads the JTAG core firmware and the JTAG firmware.
The complex is then reset to OBP. The script then loads the diagnostic
LIF header to each node in the complex. The complex is then reset to
OBP again in order to download firmware to all the nodes. A source
command is issued to OBP that loads all the firmware listed in the "/spp/
scripts/dl-diags" file into Flash memory. After this completes, the /spp/
bin/tc_init utility is executed which initializes certain NVRAM data
structures used by the Test Controller.

The fw_init script then initiates the downloading of PCI ROM
firmware by using the pciromldr firmware.

This script must be executed as root. If not then an error message is
printed and the script terminates. The error message is as follows:

This script must be run as root.

Messages are periodically printed to the console while fw_init is
executing. Examples of these messages are show below:

280 Chapter 12

Utilities
fw_init and fw_install

fw_init message example 1

** WARNING **

To allow interaction with OBP, this script will
automatically reset the “<complex name>” complex.

If HP-UX is currently running on “<complex name>”,
perform a clean shutdown (to the OBP prompt) before
proceeding.

Do you wish to continue? (y or n)

fw_init message example 2

Starting the firmware download and initialization
process.

fw_init message example 3

Loading JTAG core firmware on "hw2a-0000".

fw_init message example 4

Loading JTAG firmware on "hw2a-0000".

fw_init message example 5

Loading/verifying Diagnostic LIF header on "hw2a-0000".

fw_init message example 6

The new LIF header will now be activated.

fw_init message example 7

Saving NVRAM contents and beginning firmware download
via OBP.

fw_init message example 8

Now resetting to boot new POST/OBP.

fw_init message example 9

Now restoring NVRAM. Please wait.

Chapter 12 281

Utilities
fw_init and fw_install

fw_init message example 10

Initializing the test_controller data structures.

fw_init message example 11

Performing file cleanup and miscellaneous tasks.

fw_init message example 12

Downloading PCI ROM images (if out of date).

fw_init message example 13

The <complex name> complex has been reset to OBP.

The firmware download and initialization has been
completed.

fw_install
fw_install documents the manual process of updating firmware. To
use it, enter:

man fw_install

Using fw_init is the suggested method, but there are cases, however,
where it can not be used. If an error occurs during the fw_init script,
the following procedure and is an example of how to upgrade firmware. It
assumes a node number of 0 and a complex name of vserver. Example
commands for nodes 0 and 2 are shown below. Similar commands would
be necessary for nodes 4 and 6 as well.

As this is an example, substitute the appropriate node entries into each
command. For example, if the complex name is datacenter6, the node
names would be datacenter6-0000, datacenter6-0002, etc.

Step 1. At a shell prompt on the SSP, type the following commands:

set_complex vserver

load_eprom -n vserver-0000 -c /spp/firmware/jtag_core.fw

load_eprom -n vserver-0000 -j /spp/firmware/jtag.fw

If the system has multiple nodes, perform a similar command for each of
the nodes in the configuration using the appropriate node number.

282 Chapter 12

Utilities
fw_init and fw_install

Step 2. Power cycle the node at this time to allow new JTAG firmware to take
effect.

Step 3. Wait for ccmd to complete scan interrogation of the node.

Step 4. At the shell prompt, load the new processor-dependent code and off-line
diagnostics firmware by typing the following commands:

load_eprom -n vserver-0000 -l /spp/firmware/diaglifhdr.fw

If the system has multiple nodes, perform a similar command for each of
the nodes in the configuration using the appropriate node number.

Step 5. Reset the system by entering the following command:

reset all 1 obp

Step 6. Wait for the node(s) to boot to OBP, then at the console for node 0 change
to forthmode by entering the following command:

fm <enter>

Step 7. At the OBP “OK” prompt, type the following:

bcast fc nvsave

source /core@f0,f0000000/lan@0,d30000;15.99.111.99:/spp/scripts/dl-diags

Step 8. Wait for the new PDC and off-line diagnostics firmware to be loaded on
each node. When the download is complete, enter the following
command:

reset

Step 9. Wait for OBP to reboot and then change to forthmode by entering:

fm <enter>

Step 10. At the “ok” prompt type the following command:

bcast fc nvrestore

Step 11. Initialize test controller NVRAM structures by entering the following
commands at a shell prompt on the SSP:

su root

<enter root password>

Chapter 12 283

Utilities
fw_init and fw_install

/spp/bin/tc_init

exit

Step 12. Download the PCI ROM images by entering the following command at
the shell prompt on the SSP:

/spp/bin/tc_ioutil all pciromldr.fw

Step 13. When the pciromldr prompt appears on the console, enter the following
command:

bcast download

The pciromldr firmware verifies the PCI ROM firmware in each node
and performs updates as necessary.

Step 14. When the pciromldr prompt appears on the console, reset the system
from the SSP using the following command:

do_reset all 1 obp

284 Chapter 12

Utilities
get_node_info

get_node_info
The get_node_info utility provides as a mechanism for scripts or
programs to access the SSP configuration information generated by the
ts_config configuration tool. It has the following format:

get_node_info [node_info] [OPTIONS]

When a node is configured by ts_config, an entry is added to a node
configuration file. Each node entry contains the following information:

• Complex Name—Complex name assigned in ts_config

• Node ID—V Class Node ID

• Diagnostic IP hostname—IP hostname of Diagnostic Utility
interface

• OBP IP hostname—IP hostname assigned to OBP LAN interface

• SSP Diagnostic hostname—IP hostname assigned to the SSP
(teststation) Diagnostic interface

• Console name—Name assigned to V Class console

get_node_info obtains the SSP configuration information about all
nodes or a single node. If -A is used to request information on all nodes,
the node entries are returned in the order they appear in the
configuration file (they are not sorted).

By default, the information returned includes all of the configuration
fields. OPTIONS select a subset of the available fields. The output fields
are returned (to standard output) in the order shown above, regardless of
the ordering of OPTIONS.

[node_info] must uniquely identify a node on the SSP, a Node ID (for
example, 0) or the Diagnostic IP hostname (for example, swtest-
0000)

If a Node ID is specified, get_node_info determines the node
Complex Name from the COMPLEX_NAME environment variable. Use the
set_complex command to set the desired complex name.

Chapter 12 285

Utilities
get_node_info

[OPTIONS] include the following:

• -a—Display all fields (default)

• -A—Display all configured nodes

The selected fields will be printed in the order below)

• -c—Display the Complex name

• -n—Display the Node id

• -m—Display the Diagnostic IP hostname

• -o—Display the OBP IP hostname

• -t—Display the SSP Diagnostic hostname

• -s—Display the console name

The following are examples of the get_node_info utility:

Example showing the return all information about Node Id
0:

joker-t(hw2a):/users/sppuser$ get_node_info 0

hw2a 0 hw2a-0000 obp-hw2a-0000 tsdart-d Serial_1 2

Example of returning the complex name associated with the Diagnostic name
joker-t (hw2a): /users/sppuser$ get_node_info hw2a-0000 -c
hw2a

The sppconsole script contains an example use of the get_node_info
utility.

286 Chapter 12

Utilities
hard_logger

hard_logger
hard_logger is a script that invokes the interrogators and extractors to
log all error information on a node

The usage of the script is:

hard_logger [node number]

[node number] is a hex number.

hard_logger resides in /spp/scripts/hard_logger and is automatically
invoked be ccmd when a hard error occurs.

The hard_logger script performs the following tasks:

• Parses the command line arguments to determine on which node it
should run. ccmd sets up the COMPLEX_NAME environment variable
before invoking hard_logger. The SSP utilities called by
hard_logger use the combination of node_id and COMPLEX_NAME
to determine with which node to communicate.

• Acquires COP information for the node using sppdsh and saves the
output to /spp/data/<COMPLEX_NAME>/hl/T_FILE_n$node

• Acquires PCE information using sppdsh and saves the output to
/spp/data/<COMPLEX_NAME>/hl/T_FILE_n$node.

• Checks the Stop On Hard bits of each SPAC to find one that is
running. If an SPAC is running, then hard_logger gets information
from the SMUC CSRs.

• Reads SMUC CSRs. If there is no hard error, hard_logger quits.

• Traverses the list of hard error buses. If a bus reports a hard error,
then it performs the following:

• Interrogates each controller on that bus for hard errors.

If the hard error group pin is set to a one value, it ignores the
controller.

If the pin is a zero value, the controller may have been the first to
record the error.

• Interrogates the controller reporting the error.

Chapter 12 287

Utilities
hard_logger

To interrogate the controllers, hard_logger calls the ASIC
specific interrogator located in /spp/scripts/<asic>.

For example, the SMAC interrogator is located in
/spp/scripts/smac

The interrogator returns a list of extractors to run on that ASIC in
/spp/data/<COMPLEX_NAME>/hl/inter_n$node.

• Runs each extractor returned by the interrogator.

• Sends the COP, PCE, interrogator, and extractor output to
event_logger. event_logger forwards the COP, PCE, and
extractor output to both the SSP message console window and the
ccmd log file /spp/data/ccmd_log.

• Logs the results in /spp/data/<complex_name>/hard_hist.

hard_hist is a permanent file that records the date, time, and results
of the script.

The last run of hardlogger on a node is preserved in /spp/data/
<complex_name>/hl/OUTPUT_FILE_n$node.

288 Chapter 12

Utilities
lcd

lcd
lcd prints the current contents of the liquid crystal display for node 0 of
the current complex. It has the following format:

lcd

The complex can be changed by using the set_complex utility. The
output is sent to stdout output.

Example output of lcd

For more information, see “Front panel LCD” on page 13.

I-I- ---- I-P- ----
0 (0,0)

---- ---- ---- ----
abcedfghijklr-

Chapter 12 289

Utilities
load_eprom

load_eprom
The load_eprom utility resides on the SSP. It downloads the core
firmware products into the EEPROM on the Utilities board through the
scan interface. It can also update the JTAG scan interface controller
firmware. If, during a download, it detects any errors, it automatically
retries the download.

The load_eprom utility uses subroutines that perform the following
functions:

• It reads a raw binary file on the SSP.

• It erases the specified Flash sector and verifies that the erase was
successful. It will retry if the erase fails.

• It scan downloads the contents of the binary in 4096-byte page
increments, updating the screen for each page. A “w” is printed
during the write operation, an “r” during the optional read operation,
a “v” during the optional verify operation and a “.” when the page is
complete.

• It can optionally read each page back for verification.

• It can read-verify a binary in the Flash EEPROM and compare it to
the binary on the SSP, without performing the write operation.

The load_eprom utility usage is as follows:

load_eprom -n <IP name> [-QRV] [-P #] [-j|c|e|p|o|t|l|f]
<file>

The options available are given in Table 91.

290 Chapter 12

Utilities
load_eprom

Table 91 load_eprom options

As an example, entering the following reads the file /spp/firmware/
post.fw and updates the POST section of Flash EEPROM on the Utilities
board.

xns3_d% load_eprom -n hw2a-0000 -p /spp/firmware/
post.fw

Entering the following reads the file ./jtag.fw and updates the Flash
EEPROM for the JTAG controller:

xns3_d% load_eprom -n hw2a-0000 -j jtag.fw

The following are three addition examples of the load_eprom command.
The first two write to one sector in EEPROM and the last writes across
several sectors.

Option Description

-Q Quiet (no) output mode.

-R Read and verify data only-No writing.

-P number SPAC to use for scan operations where number is 0-7,
8 is UBUS.

-V Verify data after a write.

-j <file> Load binary into JTAG flash.

-c <file> Load binary into JTAG_CORE flash.

-e <file> Load binary into PDC Entry section.

-p <file> Load binary into PDC POST section.

-o <file> Load binary into PDC OBP section.

-t <file> Load binary into PDC Test Controller section.

-l <file> Load binary into LIF file section.

-f <file> load binary into PDC firmware loader section

Chapter 12 291

Utilities
load_eprom

Example output of load_eprom -n hw2a-0000 -e entry.pdc command

Reading file “entry.pdc”: 4253 (0x109d) bytes read.

Using default SPAC (P0L).

Erasing sector 0 (0xf0000000) OK

Writing sector 0 (0xf0000000) .. OK

Example output of load_eprom -n hw2a-0000 -p post.fw command

Reading file “post.fw”: 92820 (0x16a94) bytes read.

Using default SPAC (P0L).

Erasing sector 4 (0xf0020000) OK

Writing sector 4 (0xf0020000) OK

Example output of load_eprom -n hw2a-0000 -o obp.pdc command

Reading file “obp.pdc”: 499712 (0x7a000) bytes read.

Using default SPAC (P0L).

Erasing sector 7 (0xf0080000) OK

Writing sector 7 (0xf0080000) OK

Erasing sector 8 (0xf00a0000) OK

Writing sector 8 (0xf00a0000) OK

Erasing sector 9 (0xf00c0000) OK

Writing sector 9 (0xf00c0000) OK

Erasing sector 10 (0xf00e0000) OK

Writing sector 10 (0xf00e0000) OK

While load_eprom is writing a block of data, a “w” is printed. If the
write is successful, a dot is printed. The dots continue until the whole
sector is successfully written, at which time the “OK” is printed.

292 Chapter 12

Utilities
opie

opie
The V-Class ODE Peripheral Interface Emulation utility (opie) allows
some HP ODE Test Modules (TMs) to be executed on V-Class platforms.
ODE (Off-line Diagnostics Environment) is the utility used to test,
configure, and update I/O devices and controllers on most HP platforms.

The ODE architecture is incompatible with V-Class hardware. opie
emulates and translates the ODE calls made by TMs to calls that the V-
Class firmware understand. Test modules and opie are executed via the
Test Controller.

Version 2.0 or higher of the V-Class off-line diagnostics provide several
components required to use opie.

Test modules
The lif volume containing the test module and related firmware should
be placed in the /spp/firmware directory on the SSP. After HP-UX is
shutdown on the V-Class (shutdown -h), the system is ready to run
test modules via opie.

opie accommodates most I/O ODE test modules including the following:

• DFDUTIL

• AR60DIAG

• ARDIAG

• NIKEARRY

Test modules can be obtained from

http://fwserver.mayfield.hp.com/firmware/

or from ODE distribution Cads.

Any CPU or Memory test modules are ineffective on V-Class systems.

Using opie
To use a particular test module, perform these steps:

Step 1. Install the test module in the /spp/firmware directory

Chapter 12 293

Utilities
opie

Step 2. Login in the SSP as sspuser,

Step 3. Execute the following command:

tc_ioutil all [TMNAME]

SSP packs and runs test module.

For example:

Entering

tc_ioutil all DFDUTIL

executes the dfdutil test module on the V-Class platform.

In this example, when tc_ioutil is invoked, it opens the lif volume
DFDUTILlif in the directory /spp/firmware which contains the dfdutil
test module. It then copies the test module, along with the opie utility
and a loader utility called opie_loader.fw, into a file called
DFDTUTILTM.

tc_ioutil then issues a reset command to all selected nodes with the
ioutil mode of the test controller as the boot target. After going through
POST, the node executes the test controller in ioutil mode. The test
controller “tftps” the TM file (DFDUTILTM in the above example) into
coherent memory on the node. It then branches to the loader program,
which extracts the test module and opie utility and begins executing the
test module.

The following is an example console output:

294 Chapter 12

Utilities
opie

Booting DIAG
HP9000/V2500 Test Controller, version 2.0 1999/09/17 17:47:21
Monarch = PB0L_A
Loading file DFDUTILTM
..
..
.................................
DFDUTILTM TM copied, calling loader

 *** ***
 *** Disk Firmware Download Utility (DFDUTIL) ***
 *** ***
 *** (C) Copyright 1994 - 1999 by Hewlett-Packard Company ***
 *** All Rights Reserved ***
 *** ***
 *** This program may only be used by HP support personnel and ***
 *** those customers with the appropriate Class license or ***
 *** Node license for systems specified by the license. HP ***
 *** shall not be liable for any damages resulting from misuse ***
 *** or unauthorized use of this program. This program ***
 *** ***
 *** Version A.02.05 (7/1/99) ***
 *** ***

* WARNING! *
* --------- *
* DFDUTIL must have exclusive access to all the disks you wish to update. *
* If you are in a multihost environment such as Switchover & ServiceGuard,*
* make sure all other hosts are powered down before continuing. *

Please wait while I scan the device busses...

* HP Supported Disks Found *

Indx Path Product ID Bus Size Rev
---- ----------------- ---------------------------- ------ --- --- ----
0 7/0.8.0.100.0.6.0 SEAGATE ST15150W Fibre 3.9 GB HP10
 Legend:
Indx = Index number used for referencing the device
Rev = Firmware Revision of the device
 Note: Due to different calculation methods used, the size
 of the device shown is only a rough approximation.
Create a firmware file list? (q for quit) [default for y]
Please wait while I search for all the firmware files.
Note: This may take a while if you are booting from tape.
 OPIE: Please wait while LIF file is loaded from teststation.
 OPIE: Opening file "/spp/firmware/DFDUTILlif".
 OPIE: Transferring file (cursor will spin during transfer)...

**
 Firmware Files Found (not disks) *
**
File name Intended Product ID Rev. Size
FRU_SEA4 HPC1300WD or HPC2300WD disk array (Mech) HP 269824
ST136403FC SEAGATEST136403FC disk drive HP00 439424
ST136475LC SEAGATEST136475LC disk drive HP01 309376
ST31230N SEAGATEST31230N disk drive hpm4 261632
ST32171N SEAGATEST32171N disk drive HPM1 276512
ST39102LC SEAGATEST39102LC disk drive HP02 303360
ST39103FC0 SEAGATEST39103FC disk drive HP00 439424
ST318203FC SEAGATEST318203FC disk drive HP00 439424
ST318275LC SEAGATEST318275LC disk drive HP01 309376
 Legend:
File name = name of the firmware file
Intended Product ID = firmware file’s intended product name
Rev. = firmware Revision of the firmware file
Size = exact byte size of the firmware image
 DFDUTILTM>

Chapter 12 295

Utilities
opie

The test module is now at the user prompt as shown by:

DFDUTILTM>

waiting for input.

If the test module calls a function that is not implemented by opie, there
error message is printed on the console. If it is a critical function, the test
module may exit or prompt the user for another command.

Every test module has different commands, but each must implement a
HELP command that documents all the other commands the test module
provides. Type HELP or HELP [command] for information on how to
perform specific tasks.

Test modules may be added from time to time. Check the engineering
group responsible for certification of the hardware to verify that the off-
line diagnostic is compatible with the V-Class Off-line Diagnostic
Environment and has been tested with opie.

296 Chapter 12

Utilities
pciromldr

pciromldr
The pciromldr utility downloads Fcode to the symbios 875 and 895
controllers. It is invoked by the Test Controller I/O utility interface by
way of tc_ioutil.

The user interface is an extension of the dfdutil interface and complies
with the standard network console functionality provided by POST,
pdcfl, and dfdutil. There are, however, some features unique to the
pciromldr interface:

• Automatic selection of all appropriate controllers as targets for
download in all nodes in a complex.

• Automatic assignment of the appropriate default firmware file for
each controller. For example, the symbios875.pcirom file is
automatically assigned to the Symbios 875 controller without user
intervention.

• Automatic upgrade on multiple controllers and multiple nodes
without user intervention.

pciromldr commands
This section describes pciromldr commands.

Broadcast command
bcast has the format:

bcast <command> [<arg> <arg> ...]

This command sequences through the node list issuing the <command>
to each node. Commands are issued serially. In other words, the
command is not sent to the next node until the current node has
completely processed the command.

Change target node command
This command changes the current target node and has the following
format:

node <number>

where <number> is the desired node target number.

Chapter 12 297

Utilities
pciromldr

Display map command
This command displays the I/O configuration for each node in the
complex and has the following format:

dispmap

The following is an example of the results after a bcast dispmap command:
Node 0
 saga/ Flash FW
Index slot Vendor/Dev. ID Rev File / Rev

* 0 4/2 0x1000/0x000f 0x2002 7.0 symbios875.pcirom / 7.1
* 1 4/2 0x1000/0x000c 0x2002 7.0 symbios895.pcirom / 7.1
* 2 4/2 0x1000/0x000f 0x2002 7.0 symbios875.pcirom / 7.1

Node 2

 saga/ Flash FW
Index slot Vendor/Dev. ID Rev File / Rev

 0 4/2 0x1000/0x000f 0x2002 7.0 symbios875.pcirom / 7.1
* 1 4/2 0x1000/0x000f 0x2002 7.0 symbios875.pcirom / 7.1
* 2 4/2 0x1000/0x000c 0x2002 7.0 symbios895.pcirom / 7.1

The asterisks indicate that the card is selected and will be upgraded
when the download command is issued on that node. Notice that the
SAGA number is a node-relative (not complex) SAGA number.

Download command
This command downloads a firmware file and has the following format:

download <filename>

If <file_name> is specified, that specified file is the downloaded
firmware source instead of the currently assigned firmware file listed in
the dispmap output.

Display files command
This command displays the file name and vendor/device ID cross
reference table. This table defines the default firmware file name for
each supported PCI card.

This command has the following format:

dispfiles

298 Chapter 12

Utilities
pciromldr

The following is a an example output of the dispfiles:

% dispfiles

 Index Vendor/Dev. File name Supported ROM types
 --

 0 0x1000/0x000f symbios875.pcirom 0x012a, 0x89bd, 0x01a7,
 0x89b4, 0x0125, 0x89b8,
 0x2002, 0x01a1
 1 0x1000/0x000c symbios895.pcirom 0x012a, 0x89bd, 0x01a7,
 0x89b4, 0x0125, 0x89b8,
 0x2002, 0x01a1

Change cross reference table command
This command changes the table cross reference entry and has the
following format:

assign <index> <file_name>

Example:

assign 0 symbios.pcirom

Select and deselect cards commands
This select command selects the card(s) corresponding to the index as a
firmware upgrade target and has the following format:

select <index> [[- <index>] | [, <index> , <index> ...]] | all

This deselect command deselects the card(s) corresponding to the
index as a firmware upgrade target and has the following format:

deselect <index> [[- <index>] | [, <index> , <index> ...]] | all

Set option and value command
This command sets the value for the verchk and flashdevchk options
and has the following format:

set <option> <value>

where <option is either verchk or flashdevchk and the value is on or
off as follows:

verchk on|off

Chapter 12 299

Utilities
pciromldr

If the value is set to on, then the firmware is upgraded only when the
target controller’s firmware revision is different than the revision of the
firmware file. The default is on.

flashdevchk on|off

If the value is set to on, then the firmware is only upgraded when the
ROM ID in the selected card matches a compiled list of ROM IDs for the
corresponding card. The default is on.

300 Chapter 12

Utilities
pim_dumper

pim_dumper
pim_dumper is a utility used to display Process Internal Memory (PIM)
information after a TOC, LPMC, or HPMC. The PIM dump information
includes the processor registers and various ASIC registers. It has the
following format:

pim_dumper [-c CPU#] [-n NODE_PARM] [-t][-l][-h] [-e][-help]

Example of pim_dumper use:

pim_dumper -h -c 2

This example displays HPMC information for Processor 2 on Node 0.

The PIM information will be appended to the file /spp/data/
<COMPLEX_NAME>/pimlog, where <COMPLEX_NAME> is the name
associated with the desired node. Optionally, a copy of the PIM
information can be written to standard output.

pim_dumper can be invoked without any command line options. By
default, it dumps all available (TOC/LPMC/HPMC) information for all
enabled processors on node 0.

Table 92 lists pim_dumper options.

Table 92 pim_dumper options

 Option Description

-c CPU number Request a specific processor

-c all Select all processors (default: all)

-n NODE_PARM Specify the desired node ID (default: 0) or node
name (e.g. test-0000)

-t Display TOC information (default: on)

-l Display LPMC information (default: on)

-h Display HPMC information (default: on)

-e Echo PIM to standard output (default: off)

-help Display usage information

Chapter 12 301

Utilities
pim_dumper

The TOC/LPMC/HPMC options are mutually exclusive. Specify only one
of these options; do not specify any, and the default mode dumps all TOC/
LPMC/HPMC data.

If pim_dumper is able to accomplish the desired action, it returns zero. If
for any reason the requested operation cannot be completed, a non-zero
exit code is used.

302 Chapter 12

Utilities
set_complex

set_complex
The set_complex sets the default V2500/V2600 Complex Name in the
current shell environment.

set_complex [COMPLEX_NAME]

Once set, SSP diagnostic or console utilities that are run from within the
shell operate on the specified complex.

If multiple complexes are configured on a single SSP, individual shells
can each be set to a specific default complex using set_complex.
Diagnostic and console commands entered from the shell access the
desired node as if it were the only complex on the SSP.

Example of command entered from the shell

joker-t (hw2a): /users/sppuser$ sppconsole 0

In this example, the command accesses the console for Node ID 0 in the
hw2a complex.

Users may temporarily override the default complex by including the full
Diagnostic Node name in the Diagnostic or console command. For
example, even though the default complex is set to hw2a, the following
command requests flash_info from Node ID 0 in the hw2b complex:

joker-t(hw2a):/users/sppuser$ flash_info hw2b-0000

NOTE jf-ccmd_info lists the diagnostic node names for all active nodes on
the SSP Diagnostic LAN.

The customized shell environment for the sppuser account automatically
runs set_complex during login. If a single V2500/V2600 complex has
been configured, the default COMPLEX_NAME is assigned automatically. If
more than one complex is configured, the user is prompted for the
desired complex. With help from the parent shell, set_complex causes
the COMPLEX_NAME environment variable to be set appropriately.

set_complex also updates the shell prompt to reflect the default
complex name. The complex name is enclosed in parenthesis in the
prompt string. If the shell is running on the SSP desktop, set_complex
also updates the shell window title.

Chapter 12 303

Utilities
set_complex

set_complex can be invoked anytime the user wants to change the shell
default complex. If the user enters an invalid COMPLEX_NAME, the
default complex becomes unset and the prompt string indicates this
condition. If the user does not enter a COMPLEX_NAME, the complex name
remains set (assuming it is still a valid complex).

set_complex does not work from within a shell script. An alternative is
to explicitly set the COMPLEX_NAME environment variable using the
appropriate mechanism for the current shell script type.

Example showing change of complex name in a shell script
 +++
 +#!<shell> +
 + +
 + COMPLEX_NAME=hw2a; export COMPLEX_NAME + (sh/ksh/sppdsh)
 + <OR> +
 + setenv COMPLEX_NAME hw2a + (csh/tcsh)
 + +
 + dcm 0 +
 + ... +
 +++

NOTE Scripts that are run from a shell using set_complex receive the correct
COMPLEX_NAME environment variable from the parent shell. The
limitation is that set_complex cannot set the COMPLEX_NAME
environment variable when run from within a script.

304 Chapter 12

Utilities
soft_decode

soft_decode
soft_decode decodes single-bit ECC error data. This perl script
decodes single-bit ECC error information. It prompts for syndrome, row,
and address information that is parsed, decoded, and displayed in an
easy-to-read format that can be cut-and-pasted into quasar.

To exit enter q.

Example of soft_decode use:

% soft_decode

Enter RAM size (16, 64 or 128): 16
Enter syndrome code: 64
Enter row number: 2

Enter address: 04589030
Single-Bit ECC Error RAM Information
====================================
Location Bit Pin# Row Address
-------- --- ---- --- -------
U013A7 DQ2 6 2 589030
Enter RAM size (16 or 64): q
exiting

Chapter 12 305

Utilities
sppconsole

sppconsole
sppconsole connects the user to the console for a specified node.

sppconsole has the following format:

% sppconsole node [opt1, ..., optN

There are several ways to initiate the sppconsole interface.

• Run the sppconsole command in a shell on the SSP.

• Select from the SSP root menu the desired V2500/V2600 complex,
then select “Console” and the desired node.

• Use the consolebar utility to select the desired node.

The sppconsole script invokes the /spp/etc/console program (passing
any optional arguments and the node number) to provide the console
interface to the V2500/V2600 node. This interface communicates with
POST, OBP, the Test Controller, and the HP-UX operating system. It
starts up a window and connects the user to the console server, that is
the conserver daemon, running on the SSP. After making the
connection, the last 20 lines of the console output are displayed.

The conserver daemon is started by init when the SSP is booted. The
daemon reads the /spp/data/conserver.cf file to determine which console
terminals to open and maintain.

All errors and information messages are logged in the system log file
/var/adm/syslog/syslog.log.

The sppconsole script invokes the /spp/etc/console program to
provide the operating system a console interface. Refer to the
console(8) man page for more information about this program.

The following shows the typical output in the console window when the
node boots.

306 Chapter 12

Utilities
sppconsole

Example of sppconsole boot output
joker-t(hw2b)% sppconsole
[enter ‘^Ec?’ for help]
[no, sppuser@joker-t is attached]
[replay]
POST Hard Boot on [0:PB0L_A]
HP9000/V2500 POST Revision 1.0.0.1, compiled 1998/12/03 09:50:10 (#0039)
Probing CPUs: PB0L_A PB1R_A PB2L_A PB3R_A PB4L_A PB5R_A PB6L_A PB7R_A
Completing core logic SRAM initialization.
Starting main memory initialization.
 Probing memory: MB0L MB1L MB2R MB3R MB4L MB5L MB6R MB7R
 Installed memory: 24576 MBs, available memory: 13312 MBs.
 Initializing main memory.
 Parallel memory initialization in progress.
 r0 r1 r2 r3
 PB0L_A MB0L [:::: ::::][:::: ::::][::::][::::]
 PB1R_A MB1L [:::: ::::][:::: ::::][::::][::::]
 PB2L_A MB2R [:::: ::::][:::: ::::][::::][::::]
 PB3R_A MB3R [:::: ::::][:::: ::::][::::][::::]
 PB4L_A MB4L [:::: ::::][:::: ::::][::::][::::]
 PB5R_A MB5L [:::: ::::][:::: ::::][::::][::::]
 PB6L_A MB6R [:::: ::::][:::: ::::][::::][::::]
 PB7R_A MB7R [:::: ::::][:::: ::::][::::][::::]
 Building main memory map.
Main memory initialization complete.
Booting OBP

After POST initializes the system, OBP boots. The following is a sample
of the output.

Chapter 12 307

Utilities
sppconsole

Example of OBP output while booting
OBP Power-On Boot on [0:0]

 PDC Firmware Version Information
 PDC_ENTRY version 4.1.0.9
 POST Revision: 1.0.0.1
 OBP Fieldtest Release 4.1.0.9, compiled 98/10/30 14:11:20 (3)
 SPP_PDC Fieldtest 1.4.0.19 (11/12/98 19:17:49)

Proc type Proc# Proc Rev Speed State Dcache Icache I-prefetch
---------- ----- -------- ------- ------- ------- ------- ----------
HP,PA8500 0 2.0 440 MHz Active 1024 KB 512 KB On
HP,PA8500 2 2.0 440 MHz Active 1024 KB 512 KB On
HP,PA8500 4 2.0 440 MHz Active 1024 KB 512 KB On
HP,PA8500 6 2.0 440 MHz Active 1024 KB 512 KB On
HP,PA8500 8 2.0 440 MHz Active 1024 KB 512 KB On
HP,PA8500 10 2.0 440 MHz Active 1024 KB 512 KB On
HP,PA8500 12 2.0 440 MHz Active 1024 KB 512 KB On
HP,PA8500 14 2.0 440 MHz Active 1024 KB 512 KB On
Primary boot path = 0/0/0.6.0
Alternate boot path = 15/3 NFS 15.99.111.99:/spp/os/uxinstlf
Console path = 15/1
Keyboard path = 15/1
[*** Manufacturing (or Debug) Permissions ON ***]
System is HP9000/800/V2500 series
Autoboot and Autosearch flags are both OFF or we are in HP core mode.
Processor is entering manual boot mode.
Command Description
------- -----------
AUto [BOot|SEArch ON|OFF] Display or set the specified flag
BOot [PRI|ALT|<path> <args>] Boot from a specified path
BootTimer [time] Display or set boot delay time
CLEARPIM Clear PIM storage
CPUconfig [<cpu>] [ON|OFF|SHOW] (De)Configure/Show Processor
DEfault Set the system to defined values
DEfault Set the system to defined values
DIsplay Display this menu
ForthMode Switch to the Forth OBP interface
IO List the I/O devices in the system
LS [<path>|flash] List the boot or flash volume
OS [hpux|sppux] Display/Select Operating System
PASSword Set the Forth password
PAth [PRI|ALT|CON] [<path>] Display or modify a path
PDT [CLEAR|DEBUG] Display/clear Non-Volatile PDT state
PIM_info [cpu#] [HPMC|TOC|LPMC] Display PIM of current or any CPU
RESET [hard|debug] Force a reset of the system
RESTrict [ON|OFF] Display/Select restricted access to Forth
SCSI [INIT|RATE] [bus slot val] List/Set SCSI controller parms
SEArch [<path>] Search for boot devices
SECure [ON|OFF] Display or set secure boot mode
TIme [cn:yr:mo:dy:hr:mn[:ss]] Display or set the real-time clock
VErsion Display the firmware versions
Command:

308 Chapter 12

Utilities
sppconsole

The following message appears in the console window:

[0:1] ok [read-only -- use `^Ecf’ to attach, `^Ec?’ for
help]

Attach to the node by entering Ctrl ecf.

Press the Ctrl key e simultaneously; do not press the Ctrl key with the c
and f.

All information and error messages are logged into the /usr/adm/syslog
system error log file.

Chapter 12 309

Utilities
tc_init

tc_init
tc_init determines the node ID, ethernet address, and IP address for
all nodes in the complex. This information is then stored in the NVRAM
of all nodes as one 12-byte entry per node. Each 12-byte entry has the
format shown in Figure 73:

 Figure 73 tc_init NVRAM entry

In addition, tc_init updates the ARP entries on the SSP by executing
as root. If it can not execute as root, then the following error is displayed:

** This utility must be executed as root.
** Please login as root and try again.

tc_init outputs node information shown in the following example.

tc_init sample output

 ex-c2-t% tc_init

 Node = 0 [index=0]
 7-bit node id = 00
 Host Name = obp-hw2a-0000
 Upper ether addr = 0x000000a0
 Lower ether addr = 0xd900adb3
 IP addr = 0x0f636fa6 [15.99.111.166]
 ARP delete command = arp -d obp-hw2a-0000
 obp-hw2a-0000 (15.99.111.166) deleted
 ARP add command = arp -s obp-0000 0:a0:d9:0:ad:b3

7-bit node ID Upper 16-bits ethernet address

Lower 32-bits ethernet address

32-bit IP address

310 Chapter 12

Utilities
tc_init

Execute tc_init after the node has been configured by jf-
node_ip_set and xconfig. ccmd must finish the scan database
generation. Once ccmd executes, the changes become effective the next
time test_controller is running. If ccmd is running when tc_init is
executed then test_controller must be restarted.

tc_init only needs to be executed once. The following are the only
reasons for having to rerun this utility:

• NVRAM is corrupted.

• The system is reconfigured

NOTE tc_init is run as part of the fw_init script and should not be run
under normal circumstances.

Chapter 12 311

Utilities
tc_ioutil

tc_ioutil
tc_ioutil resets the node and requests that the Test Controller load,
(via tftp) and boot the specified file. It has the following format:

tc_iotuil <node id or all> <file>

<node id> may be a node number, the IP name, or all.

<file> should be the name of a file in /spp/firmware.

If the file has a .fw extension, then <file> is copied, as is, into coherent
memory and then executed. If it does not have the .fw extension, it is
considered to be an ODE test module. See “opie” on page 292 for details
in how these test modules are processed.

312 Chapter 12

Utilities
tc_show_struct

tc_show_struct
The tc_show_struct tool examines certain structures that the test
controller uses to set up and run tests. It has the following format:

tc_show_struct <test_name> <node_number OR node_name>

Possible selections for the tests are:

• -mem

• -io

• -cpu

• -eri

The tc_show_struct tool takes two arguments: the first is the test of
interest, the second is the node of interest.

Example of tc_show_struct output
joker-t(hw2b):/users/sppuser$ tc_show_struct -mem 0

NODE 0 (hw2b-0000)

Name : MEM3000 - EEPROM based memory tests
Entry Pt ClTb ptr StTb ptr HwReq ParmTbptr Parm_ptr

0xf01d0000 0xf01d0074 0xf01d02a8 0xf01d006c 0xf0840760 0xf0863158

Hardware req met = 0 | Test inited = 1
Selected = 0 | TC State = TC_RUNNING

Test error cnt = 0 | Loop enable = 0
Loop count = 0 | Paused mask = 0x00

Class[0] = 0 Subtest[0] = 640
Class[1] = 538968128 Subtest[1] = 0
Class[2] = 1050624 Subtest[2] = 8389636
Class[3] = 537395328 Subtest[3] = 12588160
Class[4] = 32 Subtest[4] = 537395200

Current Values for Parameters
 00) 0xa5a5a5a5 01) 0xa5a5a5a5 02) 0x5a5a5a5a 03) 0x5a5a5a5a
 04) 0x00000007 05) 0x00000001 06) 0x00000002 07) 0x00000000
 08) 0x00000000 09) 0x00000000 10) 0x000000f0 11) 0x00000000
 12) 0x00000000 13) 0x00000000 14) 0x00000000 15) 0x00000000
 16) 0x00000000 17) 0x00000000 18) 0x00000000 19) 0x00000000
 20) 0x00000000 21) 0x00000000 22) 0x00000000 23) 0x00000000
 28) 0x00000000 29) 0x00000000 30) 0x00000000 31) 0x00000000
 32) 0x00000000 33) 0x00000000 34) 0x00000000 35) 0x00000000

Chapter 12 313

Utilities
tc_show_struct

 36) 0x00000000 37) 0x00000000 38) 0x00000000 39) 0x00000000
 40) 0x00000000 41) 0x00000000 42) 0x00000000 43) 0x00000000
 44) 0x00000000 45) 0x00000000 46) 0x00000000 47) 0x00000000
 48) 0x00000000 49) 0x00000000 50) 0x00000000 51) 0x00000000
 52) 0x00000000 53) 0x00000000 54) 0x00000000 55) 0x00000000
 56) 0x00000000 57) 0x00000000 58) 0x00000000 59) 0x00000000
 60) 0x00000000 61) 0x00000000 62) 0x00000000 63) 0x00000000
 64) 0x00000000 65) 0x00000000 66) 0x00000000 67) 0x00000000
 68) 0x00000000 69) 0x00000000 70) 0x00000000 71) 0x00000000
 72) 0x00000000 73) 0x00000000 74) 0x00000000 75) 0x00000000
 76) 0x00000000 77) 0x00000000 78) 0x00000000 79) 0x00000000
 80) 0x00000000 81) 0x00000000 82) 0x00000000 83) 0x00000000
 84) 0x00000000 85) 0x00000000 86) 0x00000000 87) 0x00000000
 88) 0x00000000 89) 0x00000000 90) 0x00000000 91) 0x00000000
 92) 0x00000000 93) 0x00000000 94) 0x00000000 95) 0x00000000
 96) 0x00000000 97) 0x00000000 98) 0x00000000 99) 0x00000000
100) 0x00000000 101) 0x00000000 102) 0x00000000 103) 0x00000000
104) 0x00000000 105) 0x00000000 106) 0x00000000 107) 0x00000000
108) 0x00000000 109) 0x00000000 110) 0x00000000 111) 0x00000000
112) 0x00000000 113) 0x00000000 114) 0x00000000 115) 0x00000000
116) 0x00000000 117) 0x00000000 118) 0x00000000 119) 0x00000000
120) 0x00000000 121) 0x00000000 122) 0x00000000 123) 0x00000000
124) 0x00000000 125) 0x00000000 126) 0x00000000 127) 0x00000000

CPU Mask = 0x0000 SPAC Mask = 0x00
SMAC Mask = 0x00 STAC Mask = 0x00
SAGA Mask = 0x00

CPU 0 - State - TC_CPU_RUNNING Subtest 310
CPU 1 - State - TC_CPU_RUNNING Subtest 310
CPU 2 - State - TC_CPU_RUNNING Subtest 310
CPU 3 - State - TC_CPU_RUNNING Subtest 310
CPU 4 - State - TC_CPU_RUNNING Subtest 310
CPU 5 - State - TC_CPU_RUNNING Subtest 310
CPU 6 - State - TC_CPU_RUNNING Subtest 310
CPU 7 - State - TC_CPU_RUNNING Subtest 310
CPU 8 - State - TC_CPU_RUNNING Subtest 310
CPU 9 - State - TC_CPU_RUNNING Subtest 310
CPU 10 - State - TC_CPU_RUNNING Subtest 310
CPU 11 - State - TC_CPU_RUNNING Subtest 310
CPU 12 - State - TC_CPU_RUNNING Subtest 310
CPU 13 - State - TC_CPU_RUNNING Subtest 310
CPU 14 - State - TC_CPU_RUNNING Subtest 310
CPU 15 - State - TC_CPU_RUNNING Subtest 310
CPU 16 - State - TC_CPU_NOT_AVAIL Subtest 0
CPU 17 - State - TC_CPU_NOT_AVAIL Subtest 0
CPU 18 - State - TC_CPU_NOT_AVAIL Subtest 0
CPU 19 - State - TC_CPU_RUNNING Subtest 310
CPU 20 - State - TC_CPU_NOT_AVAIL Subtest 0
CPU 21 - State - TC_CPU_NOT_AVAIL Subtest 0
CPU 22 - State - TC_CPU_NOT_AVAIL Subtest 0

314 Chapter 12

Utilities
tc_show_struct

CPU 23 - State - TC_CPU_NOT_AVAIL Subtest 0
CPU 24 - State - TC_CPU_NOT_AVAIL Subtest 0
CPU 25 - State - TC_CPU_NOT_AVAIL Subtest 0
CPU 26 - State - TC_CPU_NOT_AVAIL Subtest 0
CPU 27 - State - TC_CPU_RUNNING Subtest 310
CPU 28 - State - TC_CPU_RUNNING Subtest 310
CPU 29 - State - TC_CPU_NOT_AVAIL Subtest 0
CPU 30 - State - TC_CPU_NOT_AVAIL Subtest 0
CPU 31 - State - TC_CPU_RUNNING Subtest 310

Chapter 12 315

Utilities
Version utilities

Version utilities
This section describes the three version utilities.

diag_version
The diag_version utility displays the product name and the version of
the current SSP software. For example:

$ diag_version

HP9000/V2500_V2600 Diagnostics, Version 2.0

flash_info
flash_info reads the known entry points for the various products that
are stored in flash EEPROM. If they have the correct magic number and
the pointer to the version string is not null, the version string is
extracted.

If no argument is provided, the lowest node in the complex is used. The
node number is entered in hexadecimal.

Example of flash_info output
uts-t (hw2b) % flash_info 0

Node : 0 (hw2b-0000)

 Program Name Version Date Build Level
--
pdcfl 2.0 1999/11/03 0006
post 2.0 1999/11/03 0114
rdr_dumper 2.0 1999/11/03
test_controller 2.0 1999/11/03 0002
mem3000 2.0 1999/11/03 0423
eri3000 2.0 1999/11/03
cpu3000 2.0 1999/11/03 0001
io3000 2.0 1999/11/03 0043
diodc 2.0 1999/11/03 0004
obp 4.2.0.8
pdc_entry 4.2.0.8

316 Chapter 12

Utilities
Version utilities

ver
ver is a SSP version retriever utility. It is used to read and display the
version information built into each diagnostic product. Its usage is:

ver <file>

ver searches the specified file for a version string previously compiled
or inserted into the file and extracts and displays a version and date
stamp. This works for most SSP utilities and diagnostics firmware.
Special options are required to display OBP, Entry PDC, SPP PDC and
Symbios Fcode firmware revisions, as shown below:

ver -e <Entry PDC file>

ver -o <OBP2500 file>

ver -p <SPP PDC file>

ver -s <Symbios Fcode file>

Chapter 12 317

Utilities
Event processing

Event processing
This section discusses three event processing utilities:

• event_logger

• log_event

event_logger
The event_logger utility is the SSP Event Logger and has a format as
follows:

event_logger [-d]

event_logger receives messages from diagnostic utilities through rpc
calls and writes them to the event log for later review or processing.

The -d option keeps event_logger from running as a daemon which is
useful for debugging.

event_logger is a background daemon and is started by init through
inittab. event_logger receives messages for the event_log via two
different mechanisms. SSP utilities programs send events to the
event_logger through rpc calls. OS events on the other hand, use UDP
datagrams that are sent out over a specific port. These must be detected
and logged as well. Upon receiving an OS event, the event travels the
same path as a SSP event.

On reception of an event, the event is written to a complex-specific
event_log file at /spp/data/<COMPLEX_NAME>/event_log. When the
event_log reaches the maximum size (approximately one Mbyte), the
event_logger compresses the event_log, then truncates the file and
continue logging events.

Other programs can request that events be sent via rpc to them. These
programs can use the libevent_client library to establish a service
and notify the event_logger what events it would like to see with a fair
degree of simplicity. On reception of an event, once the log file is written,
the linked list of interested programs is searched to see if the event
matches the criterion requested. If there is a match, the event is sent to
that program.

318 Chapter 12

Utilities
Event processing

event_logger should never terminate, but must be killed. If a second
copy of event_logger is started it attempts to kill the existing copy of
the event_logger. There should only be one copy of event_logger
running at any one time.

The following return code indicates a fatal error occurred.

-1 unknown option

log_event
log_event logs its STDIN to the event log as a single event.

log_event has the following format:

log_event [-c] [event number] -n NODE_ID

where:

• [event number]—Specifies is the event code to use in one of three
ways:

• Command line

• First line of the input

• Default

• [-c]—Specifies that event is displayed to the console in addition to
logging it to the event_log

• -n NODE_ID—Specifies the node this event is being logged against

The default event code is used if one is not specified using one of the
other methods. The command line method is used by specifying a
decimal or hex (leading 0x) as the only number on the command line (the
-c option optionally may be present). The input mode is used if a number
is the first thing on the first line read from STDIN. The input mode
overrides the command line. In the last case, the entire first line is not
logged.

When entering text for an event, you may terminate and send the
event with a ctrl-D. You may cancel the event with ctrl-C.

log_event always returns 0.

log_event is used by scripts such as the interrogators and extractors to
put information into the event log as follows:

log_event [-c] [number] -n NODE_ID

Chapter 12 319

Utilities
Event processing

The -c option displays event information output on the console as well.
If the event severity is high enough, this happens automatically.
event_logger displays any events that have a severity greater than
the warning level.

The following two examples show how log_event can be used:

cat data_file | log_event 0x86340001 -n 0

This example puts an event in the event log with the event code of
0x86340001. The data will be the information contained in the file
data_file.

echo “This is a test event” | log_event -n 0

This example puts the message “This is a test event” in the event log
with the default event code from log_event.

320 Chapter 12

Utilities
Miscellaneous tools

Miscellaneous tools
The following miscellaneous tools are described in this section:

• fix_boot_vector

• kill_by_name

fix_boot_vector
This sppdsh script restores the four words at the beginning of NVRAM
to point to POST. These four words are used by the ENTRY firmware to
determine which process was executing last when an HPMC, TOC, or
reset occurs.

kill_by_name
The kill_by_name script kills processes by name rather than by
process identification. The following is the usage of this script:

kill_by_name <process name> <signal to send> <process id to not kill>

Table 93 describes the options in kill_by_name.

Table 93 kill_by_name options

If the third argument is used, the second argument must also be
specified. For example:

kill_by_name foo 15 1234

Option Description

process name Process name to kill.

signal to send Default is kill command.

process id to not kill Kills all processes that match the
specified name except the one
matching this ID.

Chapter 13 321

13 Scan tools

This chapter details most of the scan tools which include:

• sppdsh

• do_reset

• jf-node_info

• jf-ccmd_info

• jf-reserve_info

322 Chapter 13

Scan tools
sppdsh

sppdsh
sppdsh is an enhanced version of the Korn Shell (ksh) with all of the
functionality of ksh, as well as new commands that are suited to a
diagnostic environment. sppdsh resides on the SSP in /spp/bin/sppdsh.

The diagnostic shell runs on a SSP that is totally independent of the
system itself. The shell requires information about the complexes and
nodes attached to the SSP. ccmd interrogates the complexes and nodes
on the DART bus and generates a database of information on the SSP; it
does not act unilaterally.

POST passes system information to ccmd through NVRAM about the
system itself. If POST fails to initialize the system, ccmd will time out
and print a warning. If this occurs, many diagnostic shell operations will
not work as expected.

On start-up, the diagnostic shell reads the database that ccmd provides.
If major changes are made to the system, sppdsh should be restarted to
be sure that the shell has an accurate representation of the system. If
ccmd is restarted, then the shell must be restarted.

sppdsh commands are sorted into the following five categories:

• Miscellaneous commands—Control the system behavior and aid in
generating useful scripts

• Data transfer commands—Allow the user to transfer register state or
memory information back and forth between the system and the SSP

• Data conversion commands—Reformat data to make it more useful

• System information commands—Provide information about the
system hardware to run diagnostic upon

• I/O buffering commands—Aid in the testing of I/O devices and
memory.

• Configuration commands—Alters a system configuration for POST
after a reboot.

• SPP enhancements—New sppdsh commands for the V2500/V2600
server.

The commands in each category are described in the following sections.

Chapter 13 323

Scan tools
sppdsh

Definitions
The following definitions will help user with the operation of sppdsh:

• node id—An identification (ID) that can be either the node IP name or
a node number. To distinguish between one node number and
another, the environmental variable, COMPLEX_NAME, indicates
the complex. No complex can have non-unique node numbers.

• complex name—Identifies a grouping of nodes. The ts_config
utility groups nodes into complexes where each node shares the same
OS and memory space.

• all—reference to all nodes associated with the only complex on the
diagnostic bus in a single complex configuration.

• <n<node number> | node id>:<ring>:<path>:<part>:<field>—The
general description of a register or group of registers that are
accessible through scan. Each register is identified by its node, the
scan ring that can access it, the part or device that contains it, the
scan path within the part, and the text-based description of the
register.

• address—A 40-bit value that allows access to the memory, CSR space,
IO space and Core Logic bus space across all possible nodes in a
complex.

• iteration—An iteration argument indicates the number of consecutive
memory addresses to access.

• byte_size—The byte_size argument represents the number of bytes to
access at an address. Valid byte_sizes are 1, 2, 4 or 8 but may also be
limited by the type of memory accessed. If the byte_size argument is
not used, the maximum valid size for the argument is used by default.

• value—A representation of the data transferred to a memory address
or scan field.

• parameter—A name that represents configuration data that is
initialized by POST. Parameters may be changed to aid testing or to
deconfigure hardware that is marginal. Table 94 provides a list of
valid parameters.

324 Chapter 13

Scan tools
sppdsh

Table 94 sppdsh parameters

Parameter Value

Unknown 0xff

Reserved 0x00

Pass 0x01

Fail 0x10

Deconfigured by POST 0x20

Empty 0x30

Deconfigured by software 0x40 a

16MB deconfigured 0x04

16MB 88-bit deconfigured to 80 0x24

16MB 88-bit deconfigured 0x34

16MB SW deconfigured 0x44

16MB 88-bit SW deconfigured to 80 0x64

16MB 88-bit SW deconfigured 0x74

 64MB deconfigured 0x08

 64MB 88-bit deconfigured to 80 0x28

64MB 88-bit deconfigured 0x38

64MB SW deconfigured 0x48

64MB 88-bit SW deconfigured to 80 0x68

64MB 88-bit SW deconfigured 0x78

128MB deconfigured 0x0c

128MB 88-bit v to 80 0x2c

128MB 88-bit deconfigured 0x3c

128MB SW deconfigured 0x4c

Chapter 13 325

Scan tools
sppdsh

• buf[1..4]—A buffer is a 4K byte block of memory on the SSP that is
used as a temporary holding area.

128MB 88-bit SW deconfigured to 80 0x6c

128MB 88-bit SW deconfigured 0x7c

 64MB deconfigured to 16MB 0x89

64MB deconfigured to 16MB (88-bit to 80) 0xa9

64MB deconfigured to 16MB (88-bit) 0xb9

SW deconfigured 64MB to 16MB 0xc9

SW deconfigured 64MB to 16MB (88-bit to 80) 0xe9

SW deconfigured 64MB to 16MB (88-bit) 0xf9

128MB deconfigured to 16MB 0x8d

128MB deconfigured to 16MB (88-bit to 80) 0xad

128MB deconfigured to 16MB (88-bit) 0xbd

SW deconfigured 128MB to 16MB 0xcd

SW deconfigured 128MB to 16MB (88-bit to 80) 0xed

SW deconfigured 128MB to 16MB (88-bit) 0xfd

128MB deconfigured to 64MB 0x8e

128MB deconfigured to 64MB (88-bit to 80) 0xae

128MB deconfigured to 64MB (88-bit) 0xbe

SW deconfigured 128MB to 64MB 0xce

SW deconfigured 128MB to 64MB (88-bit to 80) 0xee

SW deconfigured 128MB to 64MB (88-bit) 0xfe

a. System memory can be modified through partial deconfigura-
tion.

Parameter Value

326 Chapter 13

Scan tools
sppdsh

• backplane_serial_number—Identifies a specific board on the
diagnostic network. This number may be read with the COP
command. It is used to assign new node numbers or complex serial
numbers.

• complex_serial_number—Identifies all the nodes in a complex.
Software licensing is often based on the complex serial number.

• key—A 32-bit hexadecimal number used as an encryption code for
complex serial numbers.

• cop_id—A name associated with a board in a node. Table 95 lists valid
cop IDs.

Table 95 Valid COP IDs

ID Description

scub A system communications and utility board

mib A midplane or backplane

pb0l A processor board on the left side of the cabinet

pb0r A processor board on the right side of the cabinet

pb1l A processor board on the left side of the cabinet

pb1r A processor board on the right side of the cabinet

pb2l A processor board on the left side of the cabinet

b2r A processor board on the right side of the cabinet

pb3l A processor board on the left side of the cabinet

pb3r A processor board on the right side of the cabinet

pb4l A processor board on the left side of the cabinet

pb4r A processor board on the right side of the cabinet

pb5l A processor board on the left side of the cabinet

pb5r A processor board on the right side of the cabinet

pb6l A processor board on the left side of the cabinet

pb6r A processor board on the right side of the cabinet

Chapter 13 327

Scan tools
sppdsh

• Device_name—Refers to a major electrical component or subsection of
a node. Examples of device names are:

• SPAC—Processor agent chip

• SMAC—Memory chip

• STAC—SCI transfer chip

• SAGA—IO controller chip

• ERAC—Crossbar network chip

• CPU—Processor

• ID_number—Refers to a specific instance of the device named.

• <A | C |M |D | I |S>—Notation that refers to the processor agent chip,
processor, memory, DIMM, IO chip or SCI chip.

pb7l A processor board on the left side of the cabinet

pb7r A processor board on the right side of the cabinet

mb0l A memory board on the left side of the cabinet

mb1l A memory board on the left side of the cabinet

mb2r A memory board on the right side of the cabinet

mb3r A memory board on the right side of the cabinet

mb4l A memory board on the left side of the cabinet

mb5l A memory board on the left side of the cabinet

mb6r A memory board on the right side of the cabinet

mb7r A memory board on the right side of the cabinet

iolf An IO board on the left-front

iolr An IO board on the left-rear

 iorf An IO board on the right-front

iorr An IO board on the right-rear

ID Description

328 Chapter 13

Scan tools
sppdsh

• memory size—An argument used to deconfigure larger amounts of
memory across all memory boards on a node.

• net cache size—Refers to the memory shared between nodes in each
node’s network cache. The network cache should be the same across
all nodes in a complex.

Miscellaneous commands
sppdsh miscellaneous commands are described below:

• assert <node_id>—Assert reset on node_id; a deassert must
follow.

• assert_soft <node id>—Asserts a soft reset on node id.

• assert_toc <node_id> alt_name <E_name> <ID_number>—
Asserts transfer of control on node_id.

• deassert <node_id>—Negate reset to <node_id>.

• clock <stop|clock1> <node>:<ring>:<part>—Issue special
clock operations to node:ring:part.

• fprint “hello world %s is %d” $variable 0xff—Format
output.

• alt_name <E_name> <ID_number>—Return the alternate name of
a system board or component. For example, entering alt_name
SAGA 0, produces IOLF_B. This command does not support the
SPUC or SMUC.

• deassert <node id>—Deassert reset to node id.

• reboot <node id| complex name| all>
<default|tc_stand|tc_int|obp|epsdv|post_int|loader>—
Reboots the node or complex specified. It can use default or new
values for POST configuration data. Default values are determined
by POST after ignoring existing values. After POST runs, control can
be transferred to OBP, EPSDV, POST interactive mode, Test
Controller in stand alone mode, or the Test Controller in interactive
mode. When default is specified control is transferred to OBP.

• clock <node id> [ext|nom|high]—Changes the clock margin on
all nodes in contact with the SSP.

Chapter 13 329

Scan tools
sppdsh

• power <node id> supply[1..4] [low|nom|up—Changes the
power margin on the supply indicated across all nodes in contact with
the SSP.

• pswitch <node id>—Identifies whether N or N+1 fans have been
enabled for the system. This switch is located on the SCUB board of a
node.

• pce <node id|complex name|all> [-c <n|u|e>] [-r
<on|off>] [-p <l|n|u>]—Displays the current power, clock and
temperature state where:

• -c [n|u|e]—Sets the following clock tolerances on the current
node:

• n[ominal]—Nominal frequency

• u[pper]—Upper frequency

• e[xternal]—External connector

• -r—Sets the power flag to on or off

• -p [l|n|u]—Displays the following power supply voltages
tolerances on the current nodes.

• l[ower]—Lower voltage tolerance

• n[ominal]—Nominal voltage

• u[pper]—Upper voltage tolerance

NOTE Clocks are stopped by putting all scannable parts in internal scan mode.
Other scan paths are not allowed when clocks are stopped. A system
reset must follow an internal scan node operation.

• ds1620 <ode id|complex name|all> [-c][-b][\-s \<w
T>|<W T>|<h T> |<H T>|<s T>|<S T>|<c X>]—Displays the
cold, warm and hot trip points for temperature settings.

• -c reads and displays the configuration register.

• -b begins temperature monitor mode.

• -s set a warm, high or shutdown temperature for N or N+1 fans or
a configuration register.

330 Chapter 13

Scan tools
sppdsh

Data transfer commands
This section lists the sppdsh data transfer commands. The addresses in
the data transfer commands are 40 bits. Underbars are ignored in
addresses.

NOTE For clarity, a 0x0 style notation is returned by the shell rather than the
16#0 notation of ksh. The 16#0 notation is acceptable for data that can be
expressed in 32 bits or less.

• list <n<node number> | node
id>:<ring>:<path>:<part>:<field>—Lists the possible paths,
parts or fields that match the argument. Common wild card symbols
are supported by this command to help identify fields names.

• put [<node_number>:]<address>[,<byte_size>] <value>—
Starting at the node indicated by <node id>, write <byte_size>
bytes into the memory address using the <value>. sppdsh is aware
of the various memory sizes assumed at various addresses and
retrieves the appropriate size (For example, 0x20:0x21 = 0x30)

• put [-q] n<node_number>:<ring>:<path>:<part>:<field>—
Writes the scan location node
<node_id>:<ring>:<path>:<part>:<field>. The -q option is
used to display the result without the scan field name. If a node
number is used as the node id then an “n” should precede the node
number as “n0”.

• get [<node_number>:]<address>[,<byte_size>]
[<iterations>]—Reads <byte_size> bytes from the memory
location <address> on node <node id>. This command can be
repeated with the address incremented. One or <iterations>
different addresses will be read.

• get [-q] n<node_number>:<ring>:<path>:<part>:<field>—
Reads scan location node
<node_id>:<ring>:<path>:<part>:<field>. The -q option is
used then the result should be displayed without the scan field name.
The -a option displays both the address and the data. The -b option
eliminates leading zeros. If a node number is used as the node id then
an “n” should precede the node number as “n0”

• block n<node_number>:<ring>:<path>—Reads the scan ring at
<node id>:<ring>:<path> and lock the scan ring image for bget
and bput operations.

Chapter 13 331

Scan tools
sppdsh

• bget [-q] <part>:<field>—Extracts data from the locked scan
ring image. When the -q option is used, the results are displayed
without the scan field name

• bput [-q] <part>:<field> <value>—Inserts data into the
locked scan ring image. When the -q option is used, the results are
displayed without the scan field name.

• bunlock n<node_number>:<ring>:<path>—Writes the scan ring
image and unlocks it.

• packet [-q] [NR | R=number] [P=number] [6=number]
node8_0 <packet symbols>—Requests input to a crossbar device
from SPAC 0 on node 8. The request waits for a response and returns
it. The -q option suppresses some output. Other arguments are as
follows:

• NR—No response

• R = N—Response of N symbols

• P = N—Select port N

• 6 = N—Use N as the R6 symbol

The following is an example of this command:

packet R=3 P=1 node0_2 rd_short R=3 lgth=1 route=4
adr=0 dl=0 lcl=1 mstr=2a tid=1c size=3 Q=0

• file_to_mem <file_name> <address>—Reads a file and loads
the file into memory starting at address.

• mem_cmp <address1> <address | buffer> <size>—Compares
the memory at address1 to address1+size to that at address2.
size is a value in bytes.

• mem_dump <address> [size]—Dumps the memory starting at
address. size is a value in 64-bit words.

• mem_cpy <address | buffer> <address | buffer> [size]—
Copies the memory from address1 to buffer1 - up to size or 4K
bytes. size is a value in 64-bit words.

• tag_dump <address> [size]—Dumps the tags associated with
the cache line of address and repeat for size cache lines.

• tag_cpy <address> <data> [size]—Copies the data into the
tags associated with the cache line of address and repeat for size
cache lines.

332 Chapter 13

Scan tools
sppdsh

• ecc_dump <address> [size]—Dumps the ECC bits associated
with the cache line of address and repeat for size cache lines.

• ecc_cpy <address> <data> [size]—Copies the data into the
ECC associated with the cache line of address and repeats for size
cache lines.

Data conversion commands
Data conversion commands manipulate, evaluate or interpret data
within the diagnostic shell. They support a variety of logical, arithmetic
and string based operations. The following example is representative of
the data conversion commands:

abc=’and 0xff 0x55‘

Unless otherwise stated, these commands support data types that are
greater than 32 bits, not supported under ksh.

The following is a list of sppdsh data conversion commands:

and <arg1> <arg2>—And two data arguments.

or <arg1> <arg2>—OR two data arguments. For example:

abc=‘or 0xff 0x55‘

xor <arg1> <arg2>—Exclusively OR two data arguments. For
example:

abc=‘xor 0xff 0x55‘

even_parity <arg1> <arg2>—Return even parity. For example:

abc=‘even_parity 0xff‘‘

odd_parity <arg1> <arg2>—Return odd parity. Parity is based on 4
bytes, as an example:

abc=‘odd_parity 0xff‘

comp <arg1> <arg2>—Compare two data arguments. For example:

abc=‘comp 0xff 0xff‘

rshift <arg1> <arg2>—Right shift two data arguments. For
example:

abc=‘rshift 0x55 0x1‘

lshift <arg1> <arg2>—Left shift two data arguments. For example:

abc=‘lshift 0x55 0x1‘

Chapter 13 333

Scan tools
sppdsh

l_add <arg1> <arg2>—Left add two data arguments. For example:

abc=‘l_add 0x55 0x1‘

l_sub <arg1> <arg2>—Left subtract two data arguments. For
example:

abc=‘l_sub 0x55 0x1‘

l_mod <arg1> <arg2>—Left modulo two data arguments. For
example:

abc=‘l_mod 0x55 0x1‘

l_mult <arg1> <arg2>—Left multiply two data arguments. For
example:

abc=‘l_mult 0x55 0x1‘

b2h <arg1> <arg2>—Converts a binary number to hex (abc = 0xb).
This command is limited to 32-bit data types. For example:

abc=‘b2h 1011‘

h2b <arg1> <arg2>—Converts a hex number to binary (abc = 1011).
This command is limited to 32-bit data types. For example:

abc=‘h2b 0xb‘

conv <arg1> <arg2>—Converts from hex to decimal. This command is
limited to 32-bit data types. For example:

abc=‘conv 0xb‘

conv <arg1> <arg2>—Converts from decimal to hex. For example:

abc=‘conv 11‘

converts 11 from decimal to hex and assign it to abc (abc = 0xb). This
command is limited to 32-bit data types.

s_tos <arg1> <arg2>—Removes underbar from a hex number. For
example:

abc=‘s_tos 0xff_abcd‘

Converts 0xff_abcd to 0xffabcd and assigns it to abc.

fprint "hello world %s is %d" $variable 0xff—This
command formats data for reasonable output.

334 Chapter 13

Scan tools
sppdsh

alt_name <device_name> <ID_number>—Specifies the
<device_name> and <id_number> of a device that may be replicated
more than once in a system. For example, the device SAGA is used on
four IO boards in two different locations. Instance 0 of the SAGA refers
to the IOLF board in the B location.

alt_name SAGA 0 produces IOLF_B. The device names SPUC and
SMUC are not supported.

System information commands
The following are system information commands. For all these
command, -v produces the verbose manufacturing name, -q produces
the name alone without additional information, and -a produces the
available memory.

complex <c_name>—Set the current, default complex to be complex
c_name. If only one complex is available, this command is not necessary.

node <node _number>— set default node to be node _number in the
current complex.

fi_node—Find all available nodes in the current complex.

fi_complex—Finds all available complexes.

fi_cpu [-v] [-q] <node_number>—Find all available processors of
node_number in the current complex.

fi_emb [-v] [-q] <node_number>—Find all available EMBs of
node_number in the complex.

fi_sci [-v] [-q] <node_number>—Find all available SCIs of
node_number in the current complex.

fi_saga [-v] [-q] <node_number>—Find all available SAGAs of
node_number in the current complex.

fi_pac [-v] [-q] <node_number>—Find all available SPACs of
node_number in the current complex.

fi_rac [-v] [-q] <node_number>—Find all available ERACs of
node_number in the current complex.

fi_tac [-v] [-q] <node id>—Find all available STACs of node id
in the current complex. This is the same command as fi_sci.

fi_slice [-v] [-q] <node_number>—Find all available slices of
node_number in the current complex.

Chapter 13 335

Scan tools
sppdsh

fi_mem_inst [-a] [-q] <node_number>—Find the installed
memory size per EMB of node_number in the current complex.

swid <node>|<complex name>|"all"—Display the Software
Identifier (SW_ID) for the specified node or complex.

Configuration commands
The following is a list of the sppdsh configuration commands:

retrieve <node_number>—Retrieve the node_number configuration
parameters to the SSP from NVRAM.

replace <node_number>—replaces the node_number configuration
parameters from the SSP to NVRAM.

clist <parameter>—Parameters are names representing POST
configurable data where ever possible these parameters should have the
same names as used in OBP.

cput <node_number> parameter_name 0xnnnnnnnn—Set the
configuration parameter_name of node_number to 0xnnnnnnn in the
SSP buffer.

cget <node_number> parameter_name—Get the value stored in the
configuration parameter_name of node_number in the SSP buffer.

I/O buffering commands
This section presents a list of the sppdsh I/O buffering commands. For
these commands, four default buffers are created: buf1 - buf4.

buf_cmp buf1 buf2—Compares two buffers. Null is returned if they
are the same. If they are different, the index and data of the first conflict
is returned.

buf_cpy buf1 buf2—Copy buf1 to buf2

buf_clear buf—Clear buf1

seed [get|set 0xseed_value]—Set or get a seed value.

buf_mod [-bw|-s len value] buf_name [value | key_data]
[nbr] [offset]—Write to buffer. The following are three examples:

1. buf_mod buf1 0x01234567 10 2

writes 0x01234567 10 times with an offset of 2 words.

336 Chapter 13

Scan tools
sppdsh

2. buf_mod -b buf1 0x3d 1 10

writes the byte 0x3d once at 0x10

3. buf_mod -s 5 0 buf2

write five zeros then five ones for all of the buffer space using the
following key data:

• rand—Produces random data based on the seed

• zeroes—Produces all zero data

• ones—Produces all one data

• alt1—Alternates zeros and ones

• alt2—Alternates ones and zeros

buf_print buf1—Print buffer contents.

buf_read buf1 [size]—Prints the value of a byte in the given buffer.

Enhancements
The following is a list of enhancements for V2500/V2600 systems.

assign <node id> <mib_sn> <complex_sn> [<swid upper>
<swid lower>] <key>]—Links a node number (node_id) or complex
serial number (complex_sn) to a specific MIB backplane.

The node_id and complex_sn number are required by the system OS
and many diagnostic utilities. When a complex serial number is
assigned, the swid of the node is also updated. If the optional swid
arguments are not specified, the swid will be derived based on the
complex serial number. key is required to assign a complex serial
number to a node.

<complex_sn> must be exactly 10 alphanumeric characters. If the swid
arguments are specified, the complex serial number can be any
combination of alphanumeric characters, as long as it is exactly 10
characters. If the swid argument is not specified, the format of the
complex serial number is restricted even further. This is necessary to
ensure a valid swid is generated. The format of the complex serial
number is:

LLLYYWWNNN

Chapter 13 337

Scan tools
sppdsh

where the location code LLL is restricted to one of the following: DEH,
GBM, USJ, USM, USN, USR, and USS.

The sequence number NNN is an alphanumeric value between 000 and
P6L where the following alpha characters are excluded from use: G, I, O,
Q, U, and Z.

NOTE When upgrading a V22xx system to a V2500 or V2600, the optional swid
arguments may be used to retain SWIDs used on the V22xx system. Use
uname -i on the V22xx to obtain the existing V22xx swid. When
assigning the new V2500/V2600 complex serial number, use 0 in place of
the <swid upper> argument and the previous swid as the <swid
lower> argument.

key is an 8 digit hexadecimal number. The assign command requires a
leading 0x before the key.

If the complex key is 11223344, an example assign command might be:

assign 0 2014998 USR2222P6L 0x11223344

blink <node id>—Physically identifies a node. This command forces
the node leds to blink or turns off blinking, provided an error does not
exist on the node.

48v <node id>—Resets the 48-volt glitch detector for the node power
supply.

cop <node id|complex_id|all> <cop_id> <-ASICs>—Checks for
all cop devices through scan. If a scan ring is broken then the cop utility
may try to read cop memories for boards that may not exist.

copmod <node id> <cop device> [-<n|b|p|e|c|a|s> value]—
Modifies cop data. The cop command is used for reads only. The options
are defined as follows:

• n—Node number

• b—Board serial number

• p—Part number

• e—Engineering Date Code

• c—Clear the cop

• a—Artwork revision

• s—Scan revision

338 Chapter 13

Scan tools
sppdsh

mnetcache <node id> <?|net_cache_size>—Specifies the CTI
cache size for a node. The network or CTI cache is a valid parameter for a
single node system.

msize <node id> <?|memory_size>—Reports the memory size on
the node. memory size # resets NVRAM to support smaller memory
sizes

stop_on_hard <node id|complex_id|all> <on|off|chk>—
Prevents the OS from trying to clean-up any system errors.

query <node id> <A|C|M||I|S|D#>—Queries a node for
configuration. The options are defined as follows:

• A—agents or SPACs

• C—CPUs or processors

• M—memory boards or SMACs

• I—I/O devices or SAGAs

• D—DIMMs on a memory board

• S—SCSI devices

toggle [-u] <node id>
<A#|C#|M#|I#|S#|D<dimm_identifier>>—Changes the state of a
part of the system between active and disabled. The -u option allows
updates to be applied via utility bus scan rather than using the SPAC
unwedger. This is necessary when attempting to disable/enable devices
when the clocks are stopped, as is the case after a hard error.

The options are the same as used in the query command. Each is
followed by a single number. DIMMs may be toggled individually with
either the physical representation as mb0l.q0b0r0 or the software
representation as ewmb_0.dimm_0.row_0. The clist command may be
helpful in identifying the name of a DIMM to toggle.

nodemap <node id>—Allows the user to reconfigure some OBP and OS
support data.

Map of alternate names
Table 96 lists the alternate names of ring numbers to system parts.

Chapter 13 339

Scan tools
sppdsh

Table 96 System rings to alternates names

Ring Parts Alternate names

0 pb0l, p0l, pb0r [pcxw], spac0, [pcxw]

1 pb1r, p1l, pb1l [pcxw], spac1, [pcxw]

2 pb2l, p2l, pb2r [pcxw], spac2, [pcxw]

3 pb3r, p3l, pb3l [pcxw], spac3, [pcxw]

4 pb4l, p4l, pb4r [pcxw], spac4, [pcxw]

5 pb5r, p5l, pb5l [pcxw], spac5, [pcxw]

6 pb6l, p6l, pb6r [pcxw], spac6, [pcxw]

7 pb7r, p7l, pb7l [pcxw], spac7, [pcxw]

8 mb0l_m, mb0l_t smac0, [stac0]

9 mb1l_m, mb1l_t smac1, [stac1]

10 mb2r_m, mb2r_t smac2, [stac2]

11 mb3r_m, mb3r_t smac3, [stac3]

12 mb4l_m, mb4l_t smac4, [stac4]

13 mb5l_m, mb5l_t smac5, [stac5]

14 mb6r_m, mb6r_t smac6, [stac6]

15 mb7r_m, mb7r_t smac7, [stac7]

16 iolf_b, iolf_a saga0, saga4

17 iolr_b, iolr_a saga1, saga5

18 iorr_b, iorr_a saga2, saga6

19 iorf_b, iorf_a saga3, saga7

20 rol, r2r erac0, erac1

21 r1l, r3r erac2, erac3

22 u_p, u_m spuc, smuc

340 Chapter 13

Scan tools
do_reset

do_reset
do_reset performs one of four levels of reset on a node or complex and
has the following format:

do_reset [node id | complex name | all] [level] [boot option]

The first argument is either a node ID, complex, or the keyword, all,
which resets all nodes. If no nodes are specified, the default is to reset all
nodes in contact with the SSP. If a node number is specified, the level
argument must be specified as well.

node id may be a node number or a node IP name within the current
complex.

complex name is the name of the desired complex. All nodes within the
specified complex are reset.

all specifies all nodes within the current complex are reset.

The second argument specified is the level of reset. All levels of reset are
expressed as numbers. If no level is specified, then a reset level of 1 is
assumed.

The following reset levels are available:

1. JTAG controller SCUB reset, hard reset, clear options bits, and send
messages to ccmd

2. JTAG controller SCUB reset and system soft reset

3. JTAG controller SCUB reset

4. TOC reset

do_reset halts any scan activity taking place on the nodes. Larger
systems require more time to reset. There may be a minor delay between
the time that the reset occurs and when ccmd reports it.

If the reset completes normally, do_reset returns zero. If the operation
cannot be completed, do_reset returns a nonzero exit code.

do_reset has the following options:

• OBP—Reboots to OBP.

• post_interactive—Reboots to POST in the interactive mode.

• spsdv—Reboots to SPSDV mode.

Chapter 13 341

Scan tools
do_reset

• tc_standalone—Reboots to the test controller in stand-alone mode.

• tc_interactive—Reboots to the test controller in interactive.

• loader—Reboots to the firmware loader.

• rdr_dumper—Reboots to the RDR dumper.

If a node or parts of a node have clocks stopped due to the hard logger or
other scan operation, the boot option cannot be changed. Instead two
resets need to be issued: one to restart the system and the second to
change the boot option.

342 Chapter 13

Scan tools
jf-node_info

jf-node_info
jf-node_info displays the IP address, UDP port and JTAG firmware
version string for each node in a complex. The -e option adds the
ethernet address to the display. The -c option adds the core version to
the display.

Chapter 13 343

Scan tools
jf-ccmd_info

jf-ccmd_info
jf-ccmd_info displays information about active V2500/V2600 nodes
connected to the diagnostic LAN. It has the following format:

jf-ccmd_info

The display includes the Ethernet address, IP address, Complex Serial
number, Node number, environmental LED status, and the Diagnostic
node name of each active V2500/V2600 node.

jf-ccmd_info sends a broadcast packet to all nodes on the diagnostic
LAN requesting this information. jf-ccmd_info accumulates
responses received within a short timeout period then sorts the
responses based on node name.

The JTAG utility firmware responds to the request with output similar
to the following:

joker-t(hw2a):/users/sppuser$ jf-ccmd_info

 Complex Node Env Pwr Cub Diagnostic
Ethernet Addr IP Address Serial # # Led Sts Sts Node name
-------------- -------------- ---------- - --- --- --- ----------
0x00A0D900BF03 15.99.111.116 SN12757550 0 0x00 0x80 0x00 hw2a-0000
0x00A0D900C3A3 15.99.111.117 SN13169380 0 0x00 0x80 0x00 hw2b-0000

CAUTION jf-ccmd_info displays information about all active V2500/V2600 nodes
that answer the broadcast request, even if the node is not configured.

If the jf-ccmd_info utility displays information about a node, but the
node has not been detected by the ccmd daemon, then the node is not
configured. Use the ts_config utility to configure the node.

344 Chapter 13

Scan tools
jf-reserve_info

jf-reserve_info
Before using the JTAG scan interface on the Utilities board, SSP utilities
must reserve the JTAG hardware on a time-sharing basis. It has the
following format:

jf-reserve_info

jf-reserve_info sends a broadcast packet to all nodes on the
diagnostic LAN requesting the latest JTAG reservation information. The
JTAG utility firmware responds to the request with output similar to the
following:

joker-t(hw2a)% jf-reserve_info

RSV Node Node name UID PID TTY Time of reserve Command
--- ---- -------------- ------- ----- ----- ------------------- -------
 - 0 hw2a-0000 sppuser 2934 pts/3 Oct 26 16:40:19:229 sppdsh

The RSV column indicates whether the JTAG hardware is currently
reserved. This column may contain a Y (indicating YES) or “-], indicating
no current reservation.

If the JTAG hardware is reserved, the output includes information about
the SSP utility that is currently using the JTAG hardware.

If the JTAG hardware is not reserved, the process information shown is
historical data about the last process that reserved the JTAG hardware
on the specified node.

Appendix A 345

A List of diagnostics

This appendix provides a list of all utilities and diagnostics in this book
and where they are located.

Table 97 List of diagnostics

Name Locations

address_decode Page 253

arrm Page 254

autoreset Page 59

ccmd Page 49

console Page 256

consolebar Page 260

cpu3000 Chapter 7, page 149

cpu_hang Page 261

cxtest Chapter 5, page 125

dcm Page 263

dfdutil Page 267

diag_version Page 315

do_reset Page 340

dump_rdrs Page 277

eri3000 Chapter 8, page 157

est Chapter 11, page 221

est_config Page 59

event_logger Page 317

fix_boot_vector Page 320

flash_info Page 315

346 Appendix A

List of diagnostics

fwcp Page 278

fw_init Page 279

fw_install Page 281

get_node_info Page 284

hard_logger Page 286

io3000 Chapter 9, page 173

jf-ccmd_info Page 343

jf-node_info Page 342

jf-reserve_info Page 344

kill_by_name Page 320

lcd Page 288

load_eprom Page 289

log_event Page 318

mem3000 Chapter 10, page 207

opie Page 292

pciromldr Page 296

pdcfl Chapter 6, page 143

pim_dumper Page 300

POST Chapter 3, page 67

set_complex Page 302

soft_decode Page 304

sppdsh Page 322

spp_console Page 305

tc_init Page 309

Name Locations

Appendix A 347

List of diagnostics

tc_ioutil Page 311

tc_show_struct Page 312

ts_config Page 21

ver Page 316

xconfig Page 51

xsecure Page 64

Name Locations

348 Appendix A

List of diagnostics

Appendix B 349

B LED codes

This appendix describes core utilities board (SCUB) LED errors. The
Attention LED on the core utilities board (SCUB) turns on, and the
Attention light bar on the front of the node flashes to indicate the
presence of an error code listed Table 98. Additionally, only the highest
priority error is displayed. Once remedied, an error that is cleared may
expose a lesser priority error.

350 Appendix B

LED codes
Power on detected errors

Power on detected errors
This section describes core utilities board (SCUB) LED errors from
highest to lowest priority detected at power on. The Attention LED on
the core utilities board (SCUB) turns on, and the Attention light bar on
the front of the node flashes to indicate the presence of an error code
listed in Table 98. Additionally, only the highest priority error is
displayed. Once remedied, an error that is cleared may expose a lesser
priority error.

Errors are listed in sequence from the highest to lowest priority.

NOTE Errors from LED hex code 00 through hex code 67 shut the system down,
and errors from hex-code 68 through 73 leave the system up.

Table 98 SCUB detects power on error

LED Fault Symptoms Corrective action

00 3.3V error
(highest
priority)

1. 5V is up 3.3V is not.
2. SSP interface will not

function.

Call the Response Center.

01 ASIC Install 0
(MIB)

1. Incorrect rotation or part in
one of the processor agent
chip (PAC) sockets.

2. Incorrect rotation or part in
one of the routing (XBAR)
attachment chip (RAC)
sockets.

Call the Response Center.

02 ASIC Install 1
(EMB)

1. Incorrect rotation or part in
one of the memory access chip
(MAC) sockets.

2. Incorrect rotation or part in
one of the toroidal access chip
(TAC) on memory board (MB).

Call the Response Center.

Appendix B 351

LED codes
Power on detected errors

03 FPGA not OK 1. Core Utilities Board (SCUB)
monitoring utilities chip
(MUC) problem.

2. MUC cannot get correct
program transfer from
EEPROM on power up.

• Cycle the node power
using the Key switch.

• Call the Response
Center.

04 dc OK error
(Upper Left)

1. Power supply is reporting
failure (dc OK) after
keyswitch is turned on, but
prior to SCUB power on
sequence.

2. This is the first of two or more
supplies reporting failure.

Call the Response Center.

05 dc OK error
(Upper Right)

1. Power supply is reporting
failure (dc OK) after
keyswitch is turned on, but
prior to SCUB power on
sequence.

2. This is the first of two or more
supplies reporting failure.

Call the Response Center.

06 dc OK error
(Lower Left)

1. Power supply is reporting
failure (dc OK) after
keyswitch is turned on, but
prior to SCUB power on
sequence.

2. This is the first of two or more
supplies reporting failure.

Call the Response Center.

07 dc OK error
(Lower Right)

1. Power supply is reporting
failure (dc OK) after
keyswitch is turned on, but
prior to SCUB power on
sequence.

2. This is the first of two or more
supplies reporting failure.

Call the Response Center.

LED Fault Symptoms Corrective action

352 Appendix B

LED codes
Power on detected errors

08-11 48V error
NPSUL failure
PWRUP=0-9

1. Error occurs when 48 volt
distribution falls below 42
volts during power up state
displayed. Power up state
indicates which loads are
being turned on.

2. Excessive load on 48 volts due
to an inadequate number of
functioning 48 volt supplies
or overload condition on 48V
bus.

3. Possible node power supply
(NPS) upper left failure.

Call the Response Center.

12-1B 48V error
NPSUR
failure
PWRUP=0-9

1. Error occurs when 48 volt
distribution falls below 42
volts during power up state
displayed. Power up state
indicates which loads are
being turned on.

2. Excessive load on 48 volts due
to an inadequate number of
functioning 48 volt supplies
or overload condition on 48V
bus.

3. Possible node power supply
(NPS) upper right failure.

Call the Response Center.

LED Fault Symptoms Corrective action

Appendix B 353

LED codes
Power on detected errors

1C-25 48V error
NPSLL failure
PWRUP=0-9

1. Error occurs when 48 volt
distribution falls below 42
volts during power up state
displayed. Power up state
indicates which loads are
being turned on.

2. Excessive load on 48 volts due
to an inadequate number of
functioning 48 volt supplies
or overload condition on 48V
bus.

3. Possible node power supply
(NPS) lower left failure.

Call the Response Center.

26-2F 48V error
NPSLR failure
PWRUP=0-9

1. Error occurs when 48 volt
distribution falls below 42
volts during power up state
displayed. Power up state
indicates which loads are
being turned on.

2. Excessive load on 48 volts due
to an inadequate number of
functioning 48 volt supplies
or overload condition on 48V
bus.

3. Possible node power supply
(NPS) lower right failure.

Call the Response Center.

LED Fault Symptoms Corrective action

354 Appendix B

LED codes
Power on detected errors

30-39 48V error
(maintenance)
no supply
failure
reported
PWRUP=0-9

1. Error occurs when 48 volt
distribution falls below 42
volts during power up state
displayed. Power up state
indicates which loads are
being turned on.

2. Excessive load on 48 volts due
to an inadequate number of
functioning 48 volt supplies
or overload condition on 48V
bus.

3. Possible node power supply
(NPS) failure.

Call the Response Center.

3A 48V Yo Yo
error

1. Core utilities board (SCUB)
lost and then regained 48V
power without the machine
being turned off or ac power
failure.

2. Core utilities board (SCUB)
will display this error and not
power on the system.

• Cycle dc power to the
node using the keyswitch
to attempt to clear the
Yo Yo bit.

• Call the Response
Center.

3B MIB power fail
(MIBPB)

1. VDD (3.3V) error on
MidPlane power board
(MIBPB).

2. Midplane power fails and
entire node will power down.

3. Core utilities board (SCUB)
still active.

• Cycle dc power to the
node using the keyswitch
to attempt to clear the
error.

• Call the Response
Center.

3C Clock fail • Core utilities board (SCUB)
monitors clock on MidPlane
(MIB).

Call the Response Center.

LED Fault Symptoms Corrective action

Appendix B 355

LED codes
SCUB detected memory power fail

SCUB detected memory power fail
This describes covers memory errors detected by the monitoring utilities
chip (MUC) on the core utilities board after power-on.

Table 99 SCUB detects memory power fail

LED Fault Symptoms Corrective action

40 MB0L Power Fail 1. 3.3V dropped below
acceptable level.

2. Core utilities board
(SCUB) detected a power
loss on reported memory
board (MB).

3. Core utilities board
(SCUB) powers down the
system

Call the Response Center.

41 MB1L Power Fail

42 MB2R Power Fail

43 MB3R Power Fail

44 MB4L Power Fail

45 MB5L Power Fail

46 MB6R Power Fail

47 MB7R Power Fail

356 Appendix B

LED codes
SCUB detected processor error

SCUB detected processor error
This section describes processor errors detected by the monitoring
utilities chip (MUC) on the core utilities board after power-on.

Table 100 SCUB detects processor power fail

LED Fault Symptoms Corrective action

48 PB0L Power Fail 1. 3.3V dropped below
acceptable level.

2. Core utilities board (SCUB)
detected a power loss on the
reported processor board
(PB).

3. Core utilities board (SCUB)
powers down the system.

Call the Response Center.

49 PB1R Power Fail

4A PB2L Power Fail

4B PB3R Power Fail

4C PB4L Power Fail

4D PB5R Power Fail

4E PB6L Power Fail

4F PB7R Power Fail

50 PB0R Power Fail

51 PB1L Power Fail

52 PB2R Power Fail

53 PB3L Power Fail

54 PB4R Power Fail

55 PB5L Power Fail

56 PB6R Power Fail

57 PB7L Power Fail

Appendix B 357

LED codes
SCUB detected I/O error

SCUB detected I/O error
This section describes I/O errors detected by the monitoring utilities chip
(MUC) on the core utilities board after power-on.

Table 101 SCUB detects I/O (IOB) power fail

LED Fault Symptoms Corrective action

58 Left Front
I/O Board failure

1. 3.3V or 5V dropped below
acceptable level (+12V and
-12V not monitored).

2. Core utilities board (SCUB)
detected a power loss on
reported I/O board (IOB).

3. Core utilities board (SCUB)
powers down the system.

Call the Response
Center.

59 Left Rear
I/O Board failure

5A Right Front I/O
Board failure

5B Right Rear
I/O Board failure

358 Appendix B

LED codes
SCUB detected fan error

SCUB detected fan error
This section describes fan errors detected by the monitoring utilities chip
(MUC) on the core utilities board after power-on.

NOTE Fan positions are referred to as viewed from the rear of the server.

Table 102 SCUB detects fan power fail

LED Fault Symptoms Corrective action

5C Fan failure Upper Right Sensor in the reported fan
(as viewed from rear of
system) determines fan
failure.

Call the Response
Center.

5D Fan failure Upper Middle

5E Fan failure Upper Left

5F Fan failure Lower Right

60 Fan failure Lower Middle

61 Fan failure Lower Left

Appendix B 359

LED codes
SCUB detected ambient air errors

SCUB detected ambient air errors
This section describes air errors detected by the monitoring utilities chip
(MUC) on the core utilities board after power-on.

Table 103 SCUB detects ambient air error

LED Fault Symptoms Corrective action

62 Ambient hot 1. Ambient air too hot.
2. Core utilities board (SCUB)

powers down system.
3. Should have received “ambient

air too warm” error 69 prior to
this error.

• Check site temperature.
• Call the Response

Center.

63 OVERTEMP
MIB

1. MidPlane (MIB) too hot.
2. Core utilities board (SCUB)

sensed overtemp on MidPlane
power board (MIBPB) and powers
down the system.

• Check that air flow is
not blocked.

• Check fans.
• Call the Response

Center.

64 QUADRL 0 1. Board overheated in Quadrant 0.
2. Core utilities board (SCUB)

sensed overtemp in Quadrant 0
and powers down the system.

Call the Response Center.

65 QUADRU 1 1. Board overheated in Quadrant 1.
2. Core utilities board (SCUB)

sensed overtemp in Quadrant 1
and powers down the system.

Call the Response Center.

66 QUADLL 2 1. Board overheated in Quadrant 2.
2. Core utilities board (SCUB)

sensed overtemp in Quadrant 2
and powers down the system.

Call the Response Center.

67 QUADLU 3 1. Board overheated in Quadrant 3.
2. Core utilities board (SCUB)

sensed overtemp in Quadrant 3
and powers down the system.

Call the Response Center.

360 Appendix B

LED codes
SCUB detected hard error

SCUB detected hard error
This section describes hard errors detected by the monitoring utilities
chip (MUC) on the core utilities board after power-on.

Table 104 Hard error

LED Fault Symptoms Corrective action

68 Hard error
(RAC) (PAC)
(MAC) (TAC)
(SAGA)

1. Hard error lines to core utilities
board (SCUB) reported ASIC
problem.

2. Bit and hard error bus
determine which ASIC to check

• Read /spp/data/
hard_list.

• Call the Response Center.

Appendix B 361

LED codes
SCUB detected intake ambient air error

SCUB detected intake ambient air error
This section describes air intake errors detected by the monitoring
utilities chip (MUC) on the core utilities board after power-on.

Table 105 Ambient air (intake) error

LED Fault Symptoms Corrective action

69 Ambient air too warm
is an environmental
warning

Intake air through SCUB
too warm.

• Check site temperature
and correct.

• If the fault reoccurs
when room temperature
is within specification.
call the Response Center

362 Appendix B

LED codes
SCUB detected dc error

SCUB detected dc error
This section describes dc errors detected by the monitoring utilities chip
(MUC) on the core utilities board after power-on.

Table 106 dc error

LED Fault Symptoms Corrective action

70 NPSUL
failure
(warning)

1. Node power supply (Viewed from
Node front) failure reported.

2. Low-priority error for redundant
power configurations.

Call the Response Center

71 NPSUR
failure
(warning)

72 NPSLL
failure
(warning)

73 NPSLR
failure
(warning)

Appendix B 363

LED codes
Displaying the SCUB LED values using pce

Displaying the SCUB LED values using
pce
Use the sppdsh command pce to display the value of the LEDs on the
SCUB.

Step 1. Bring up the sppdsh prompt at a sppuser window by entering:

$ sppdsh

Step 2. Use the pce command to display the LED values for all nodes, enter:

sppdsh: pce all

Node IP address Clocks LEDS @C U SHPT Supply1 Supply2 Supply3 Supply4

------------------- ------ --------- ---- ------ ------- ------- ------- -------

 0 15.99.111.116 Normal 0x00 25 1 0000 Nominal Nominal Nominal Nominal

 2 15.99.111.117 Normal 0x00 25 1 0000 Nominal Nominal Nominal Nominal

For more information about the pce command see the sppdsh man page.

Step 3. Decode the LED values using Appendix A, “LED codes” .

364 Appendix B

LED codes
Identifying a node with the blink command

Identifying a node with the blink
command
The blink command is used to physically identify a node. This command
forces the node attention light bar to blink or turns off blinking, provided
an error does not exist on the node.

Step 1. Bring up the sppdsh prompt at a sppuser window by entering:

$ sppdsh

Step 2. Use the blink command to cause the attention light bar to blink on a
specific node by entering the blink command followed by the node
number. For example:

sppdsh: blink 0

For more information about the blink command see the sppdsh man
page.

Step 3. After you have physically identified the node cause the attention light
bar to return to a steady state by entering:

sppdsh: blink 0

Appendix C 365

C Memory configurations

In the V2500/V2600 server, Excalibur Pluggable Memory Boards
(EPMBs) are installed in 16 DIMM connectors on the EWMBs.

A V2500/V2600 memory board is organized by quadrants, rows, and
buses. Each memory board has four quadrants, four rows and eight
buses.

The following terms are used to describe a V2500/V2600 memory board,
as shown in Figure 74:

Slot The physical location into which DIMMs are installed.
There are 16 DIMM slots, each with a unique
designator which denotes the slot’s quadrant and bus.

Quadrant A group of four DIMM slots staggered across the
memory board.

Buses Eight buses span the four rows. Each DIMM in a
quadrant is on a different bus.

Rows Each DIMM has SDRAMs on each side and represents
two rows. For instance, the first DIMM installed in the
system would represent row 0 bus 0 and row 1 bus 0.
All DIMMs have the same SDRAMs on both sides.
Therefore, rows 0 and 1 will have the same SDRAM
size. Rows 2 and 3 will have the same SDRAM size.
Bus interleaving can be configured to either 4 way or 8
way bus interleaving. 8 way provides the best
performance. To achieve 8 way bus interleaving, all
buses on a row must be populated with DIMMs having
the same SDRAM size.

Table 107 shows the correlation between a DIMM slot and a row bus
intersection. The first DIMM to be installed in a memory board, Q0B0,
occupies row 0 bus 0 and row 1 bus 0 in quadrant 0.

366 Appendix C

Memory configurations

Table 107 DIMM row/bus table

Rows Buses

0 1 2 3 4 5 6 7

0 Q0B0 Q0B1 Q0B2 Q0B3 Q1B4 Q1B5 Q1B6 Q1B7

1

2 Q2B0 Q2B1 Q2B2 Q2B3 Q3B4 Q3B5 Q3B6 Q3B7

3

Appendix C 367

Memory configurations
V2500/V2600 DIMM quadrant designations

V2500/V2600 DIMM quadrant
designations
Memory boards can be populated in increments of four DIMMs called
quadrants.

• Four DIMMS provides 1/4 population

• Eight DIMMS provides 1/2 population

• Twelve DIMMS provides 3/4 population

• Sixteen DIMMS provides full population

Table 108 shows the rows and buses associated with each quadrant ID
and Figure 74 shows how these are laid out on the memory board.

Table 108 Quadrant assignments

Rows Buses

0 1 2 3 4 5 6 7

0 Quadrant 0 Quadrant 1

1

2 Quadrant 2 Quadrant 3

3

368 Appendix C

Memory configurations
V2500/V2600 DIMM quadrant designations

 Figure 74 V2500/V2600 DIMM locations

Example:

Q2B3: Quadrant 2, Bank 3

Appendix C 369

Memory configurations
V2500/V2600 DIMM configuration rules

V2500/V2600 DIMM configuration rules
Use the following rules to plan the memory board DIMM configuration:

• All memory boards must be populated identically.

• Single node memory boards may be populated in 1/4, 1/2, 3/4, or full
increments.

• Multi node memory boards may be populated in only 1/4, 1/2, or full
increments.

• All DIMMs within a quadrant must be of the same size: 32 Mbyte,
128 Mbyte or 256 Mbyte.

• DIMMs in quadrant 0 can be of a different size than DIMMs in
quadrant 2 or 3 without degrading performance.

• DIMMs in quadrant 1 can be of a different size than DIMMs in
quadrant 2 or 3 without degrading performance.

• DIMMS in quadrant 0 and 1 should be the same size for maximum
performance.

• DIMMS in quadrant 2 and 3 should be the same size for maximum
performance.

• DIMMs in quadrant 0 can be of a different size than DIMMs in
quadrant 1. To allow this memory to be fully utilized, the bus
interleave span will be reduced to 4 way bus interleaving. This will
degrade performance.

• DIMMs in quadrant 2 can be of a different size than DIMMs in
quadrant 3. To allow this memory to be fully utilized, the bus
interleave span will be reduced to 4 way bus interleaving. This will
degrade performance.

• Mixing of 32-Mbyte DIMMS and 256-Mbyte DIMMs is not supported.

• All quadrants on a given memory board do not have to be populated
with DIMMs.

370 Appendix C

Memory configurations
V2500/V2600 memory board configuration rules

V2500/V2600 memory board
configuration rules
The V2500/V2600 system supports up to eight memory boards. Valid
configurations of memory boards include two, four, and eight. (A six
memory board configuration is not supported.) The first two memory
boards, as shown in Table 109 on page 370, are located in slots MB0L
and MB1l.

Table 109 Memory board configurations

Order Slot locations

Minimum system configuration MB0L
MB1L

Four memory boards MB6R
MB7R

Eight memory boards MB2R
MB3R
MB4L
MB5L

Index 371

Index

Numerics
712 workstation, 47

A
AC Connectivity test, 241
AC test of a node, 11
add terminal mux, 33, 34
address decode, 253
arrm, 254
attention light bar, 16
Attention lightbar, 4, 7
autoreset, 255

B
B180L workstation, 47
bcast command, 296
blink, 18, 364
Boot Configuration map, 134
bootable device table, 269
buses

memory, discussed, 365
Bypass test, 242

C
ccmd, 20, 47, 49, 50, 238
change target node command,

296
chassis codes, 87–92
clock margining, 10
commands

 see also utilities
blink, 18, 364

complex, 47
configuration

node, 26–29
console, 256

escape sequences, 257
example, 259
starting from ts_config, 34

console ethernet, 7
console messages, 81–87

consolebar, 260, 305
 see also sppconsole

consolelog, 48
controllers

SMUC, 2, 4, 7, 9
SPAC, 4
SPUC, 4, 6, 7, 9

COP chip, 7
Core Logic, 4, 6, 7, 10

bus, 4
DUART, 6
flash memory, 6
nonvolatile SRAM, 6, 309

cpu_hang, 261
example, 262
fault isolation methods, 261–

262
cpu3000
classes, 150, 158
subtests, 150, 158

CTI cache, 54, 68
cxtest, 125–137
command line interface, 138–

142
Command menu, 132
example of running diagnostics

from cxtest window, 135–
137

File menu, 129
graphics interface, 128–134
Help menu, 133
powering down the system, 134
System Configuration menu,

132
Test Class Selection menu, 130
Test menu, 129

D
DC Connectivity, 242
DC test of a node, 11
dcm, 263, 265, 303
deconfigure node, 33

dfdutil, 47, 267–276
bootable device table, 269
commands, 271–275
DISPFILES command, 271,

273
DISPMAP command, 271, 272
DOWNLOAD command, 271,

272
HELP command, 271, 274
LIF file table, 270
LS command, 271, 274
NODE command, 271, 274
notes and cautions, 275
RESET command, 271, 274
UTILINFO command, 271,

274
diag_version, 315
diagnostic LAN, 47
DIMM, 54
configuration rules, 369
multinode considerations, 369
quadrant assignment table

, 367
row/bus table, 366
unsupported mix, 369

do_reset, 340
Dual Universal Asynchronous

Receiver-Transmitter
(DUART), 6, 7, 48

dump_rdrs, 277

E
EEPROM, 6, 68
environmental conditions, 9
environmental control, 10
environmental errors, 17, 350–

363
Environmental sensors, 4
eri3000
classes, 158
CSR mismatch errors, 165
default error message, 171

372 Index

ERI cable pattern failure, 167
ERI mismatch error, 165
ERI node routing failure, 167
ERI ring state error, 166
ERI synchronization failure,

169
ERI TAC routing failure, 168
ERI Time of Century (TOC)

Sync failure, 170
error messages, 165–171
Errors detected by another

node, 170
event codes, 171
subtests, 158
class 1, 159
class 2, 160
class 3, 162, 163

system errors, 171
user parameter definitions,

164
error codes. see LED errors
error indicator, 16
errors
cpu3000, 155
eri3000 cable pattern failure,

167
eri3000 CSR mismatch, 165
eri3000 default error message,

171
eri3000 ERI mismatch, 165
eri3000 errors detected by

another node, 170
eri3000 node routing failure,

167
eri3000 ring state, 166
eri3000 synchronization

failure, 169
eri3000 system errors, 171
eri3000 TAC routing failure,

168
eri3000 Time of Century (TOC)

Syncfailure, 170

io3000 ATM controller specific
errors, 203, 204, 205

io3000 controller command
errors, 202

io3000 controller general
errors, 201

io3000 device specification
errors, 197

io3000 DMA error, 203
io3000 error codes, 196
io3000 ErrorInfo CSR error,

199
io3000 general errors, 196
io3000 PCI errors, 201
io3000 SAGA CSR error, 198
io3000 SAGA ErrorCause CSR

error, 199
io3000 SAGA general errors,

197
io3000 SAGA SRAM errors,

200
io3000 SCSI inquiry error, 203
mem3000 error codes, 214
mem3000 extended error

codes, 216
escape sequences, console, 257
est, 221, 222, 238
command line
AC Connectivity test, 241
Bypass test, 242
DC Connectivity test, 242
DC Connectivity test options,

242
Gate Array test, 242
Gate Array test options, 243
JTAG Identification test, 246
margin commands, 246
miscellaneous commands,

247
options, 238
running est from command

line, 238
script files, 249
usage examples, 239

communications with ECUB,
222

GUI
ac button, 225
Clocks button, 227
command line window, 228
connectivity test window, 228
dc button, 225
Details button, 227
Files button, 226
ga’s button, 225
gate array test window, 230
help browser window, 235
Help button, 235
main window, 224
Misc button, 227
Options button, 226
Power button, 226
ring button, 225
running the est GUI, 224
scan window, 232
SCI cable test window, 234
System Test button, 225

tests, 222
utility test environment, 222

ethernet, 11
event_logger, 317, 319

F
firmware, 46
fix_boot_sector, 320
flash memory, 6
flash_info, 315
FORTH, 47
front panel LCD, 13
fw_init, 279, 280, 310
fw_install, 279, 281

 see also tc_init
fwcp, 278

G
Gate Array test, 242
get_node_info, 284, 285
GUI

Index 373

xconfig windiw, 52
xconfig window, 53, 54

menu bar, 54
node configuration map, 55
node control panel, 57

H
hard_logger, 286, 287
HP-UX, 46, 48

I
indicators

light bar, 16
io3000
ATM controller specific errors,

203, 204, 205
classes, 174
controller command errors,

202
controller general errors, 201
device specification, 191
device specification errors, 197
DMA error, 203
error codes, 196
ErrorInfo CSR error, 199
general errors, 196
PCI errors, 201
SAGA CSR error, 198
SAGA ErrorCause CSR error,

199
SAGA general errors, 197
SAGA name to number

correlation, 194
SAGA SRAM errors, 200
SCSI inquiry error, 203
subtests, 175

IP address, 47

J
jf-node_info, 342
JTAG, 20, 47, 222
command line

Identification test, 246
fanout, 11
interface, 4, 10
port, 20
SSP, 20

K
kill_by_name, 320

L
LCD, 48
LCD (Liquid Crystal Display), 4,

6, 7, 12, 288
message display line,table, 15
Node status line, 13
processor init steps, table, 13
processor run-time

status,table, 14
Processor status line, 13

LCD messages, 81
LEDs

attention light bar, 12
CUB error, 17
SCUB error, 363

LIF file table, 270
light bar, 16
List of diagnostics and utilities,

345
load_eprom, 289, 290, 291
log_event, 317, 318

M
margin commands, 246
mem3000, 207
classes, 208
command line, 117, 135
configuration, 117
cxtest, 117, 135
error codes, 214
extended error codes, 216
selecting classes and subtests,

120

starting, 123
subtests, 209
Subtests menu, 121
viewing the results, 123

memory board
buses, discussed, 365
configuration

discussed, 365, 370
configuration rules, 370
configuration table, 370
population, discussed, 367
quadrant, defined, 365
rows, defined, 365
SDRAM, discussed, 365
slot, defined, 365
terminology, 365

memory boards, 207
memory power fail, 355
MidPlane Board (MIB), 2
miscellaneous tools, 320
fix_boot_sector, 320
kill_by_name, 320

mu-000X, 47
multinode console error

messages, 92–97

N
Nike array, 276
node
configure, 26–29
deconfigure, 33
environmental monitoring

functions, 10
environmental sensors, 4
error conditions, 7, 9
power-on function, 9, 10
reset, 31, 32

node routing board
poweron detected errors, 350
SMUC detected errors, 355

Non Volatile battery-backed
RAM (NVRAM), 6, 100, 101,
126, 309, 322

374 Index

O
Open Boot PROM (OBP), 6, 19,

46, 48, 58, 68
opie, 292

P
packet, 5
PCI, 132
pcirom, 47
pciromldr, 296–299

bcast command, 296
change cross reference table

command, 298
change target node command,

296
dispfiles command, 297
dispmap command, 297
download command, 297
select and deselect cards

commands, 298
set option and value command,

298
pciromldr commands, 296–299
pdcfl, 143–147
commands, 146
loading, booting, and setup,

144
NVRAM setup, 144
SSP setup, 144

pim_dumper, 300, 301
planning

memory board configuration,
370

POST, 6, 13, 46–51, 56, 58, 61,
67–97, 101, 102, 134, 320,
322

chassis codes, 87–92
configuration parameters, 76
console messages, 81–87
interactive mode, 73
interactive mode commands,

73

LCD messages, 81
messages, 81
modules, 70
multinode console error

messages, 92–97
power supply

indicators, 16
powering down the system, 134
Power-On circuit, 4, 7
Power-On function, 10
private LAN see diagnostic LAN
Processor-Dependent Code

(PDC), 6

Q
quadrant

associated rows and buses, 367
defined, 365

R
RDR dump utilities, 277
remove

terminal mux, 34
report_cfg, 19, 60
reset

hard, 69
powerup, 69
soft, 69

reset node, 31, 32
rows, defined, 365
RS-232, 48

S
SCA
configuration

split, 41–43
scan tools

do_reset, 340
jf-node_info, 342
sppdsh
configuration commands, 335
data conversion commands,

332
data transfer commands, 330
I/O buffering commands, 335
map of alternate names, 338
miscellaneous commands,

328
system information com-

mands, 334
scanning, 4
script, 247
script files, 249
scub_ip address, 30, 31
configure, 30, 31

SDRAM, discussed, 365
set_complex, 284, 288, 302, 303

 see also sppconsole
slot

DIMM, defined, 365
SMUC

detected errors, 355
soft_decode, 304
split SCA, 41–43
spp_pdc, 6, 46
sppconsole, 48, 260, 285, 302,

305–308
 see also consolebar
 see also set_complex

sppdsh, 7, 19, 320, 322
configuration commands, 335
data conversion commands,

332
data transfer commands, 330
I/O buffering commands, 335
map of alternate names, 338
miscellaneous commands, 328
system information

commands, 334
SSP, 4, 19, 20, 49, 316
ccmd running on, 49
IP address for LAN messaging,

76
setup using pdcfl, 144

SSP interface, 11
SSP-to-system, illustrated, 46

Index 375

Stingray Core Utilities Board
(SCUB), 47

Stingray Core Utility Board
(SCUB)

detected ambient air errors,
359

detected dc error, 362
detected fan error, 358
detected hard error, 360
detected I/O error, 357
detected intake ambient air

error, 361
detected memory power fail,

355
detected processor error, 356

Stingray Monitor Utilties
controller (SMUC), 4, 7, 9

Stingray Processor Agent
controller (SPAC), 4

Stingray Processor Utilities
controller (SPUC), 4

Stingray Processor Utilties
controller (SPUC), 4, 6, 7, 9

Stop-on-hard button, 58
Stringray Core Utilities Board

(SCUB), 2
Symbios, 47
system

status, 48
system displays, 12

T
Tachyon Fibre Channel, 173,

175, 187, 188, 204
tc_init, 309, 310

 see also fw_init
tc_ioutil, 253, 267, 311
tc_show_struct, 312
terminal mux

add/configure, 33, 34
remove, 34

test controller, 99, 101, 125

interactive mode, 100
modes, 100
stand-alone mode, 100, 134
test configuration menu, 110
Test Selection menu, 117, 135
user interface, 101

tftp, 47
troubleshooting

power supply indicators, 16
ts_config, 19, 21–45, 47
configuration procedures, 24–

43
files, 44–45
operation, 22–24
starting, 21, 22

ttylink, 48

U
upgrade

memory, 370
to eight memory boards, 370
to four memory boards, 370

upgrade JTAG firmware
JTAG, upgrade firmware, 24–

26
User interface, 101
utilities

address_decode, 253
arrm, 254
autoreset, 59, 255
ccmd, 20, 47, 49, 50
console, 256
consolebar, 260, 305
consolelog, 48
cpu_hang, 261

example, 262
fault isolation methods, 261–

262
dcm, 263, 264, 265, 303
dfdutil, 47, 267–276
commands, 271–275
DISPFILES command, 271,

273

DISPMAP command, 271,
272

DOWNLOAD command, 271,
272

HELP command, 274
LS command, 271, 274
NODE command, 271, 274
notes and cautions, 275
RESET command, 271, 274
UTILINFO command, 271,

274
diag_version, 315
dump_rdrs, 277
est_config, 59
event_logger, 317
fix_boot_sector, 320
flash_info, 315, 317, 318, 319
fw_init, 271, 279, 280, 310
fw_install, 279, 281
fwcp, 278
get_node_info, 284, 285
hard_logger, 286, 287
kill_by_name, 320
lcd, 288
listed, 345
load_eprom, 289, 290, 291
log_event, 317, 318
opie, 292
pcirom, 47
pciromldr, 296–299

bcast command, 296
change cross reference table

command, 298
change target node com-

mand, 296
dispfiles command, 297
dispmap command, 297
download command, 297
select and deselect cards com-

mands, 298
set option and value com-

mand, 298
pciromldr commands, 296–299
pim_dumper, 300, 301
report_cfg, 19

376 Index

set_complex, 284, 302, 303
 see also sppconsole

soft_decode, 304
spp_pdc, 46
sppconsole, 48, 285, 302, 305–

308
 see also consolebar

sppdsh, 19, 320
tc_init, 309, 310

 see also fw_init
tc_ioutil, 311
tc_show_struct, 312
ts_config, 19, 21–45, 47
ver, 316
xconfig, 19, 51, 52, 53, 54, 55,

56, 57, 58
xsecure, 64

Utilities board, 4, 6, 7, 125, 126,
222

utilties
set_complex, 288

V
version utilities

diag_version, 315
voltage margining, 10

W
workstation

712, 47
B180L, 47
differences, 47

X
xconfig, 19, 51

and POST, 68
description, 51
menu bar, 54
node configuration, 55
node control panel, 57
window, 52, 53, 54

xsecure, 64

	HP Diagnostics Guide
	V2500/V2600 Servers
	Revision History

	Notice
	Preface
	Introduction
	Utilities board
	System displays

	Configuration management
	SSP
	ts_config
	SSP-to-system communications
	ccmd
	xconfig
	Configuration utilities

	Power-On Self Test
	Overview
	POST modules
	Interactive mode
	Messages

	Test Controller
	Test Controller modes
	User interface
	Example of running diagnostics from Test Controller command line

	cxtest
	Overview
	Graphics interface
	Example of running diagnostics from
	window
	Command line interface

	Processor-dependent code firmware loader
	pdcfl loading, booting, and setup
	pdcfl commands

	cpu3000
	cpu3000 classes and subtests
	cpu3000 errors

	eri3000
	eri3000 classes and subtests
	User parameter definitions
	eri3000 error messages

	io3000
	io3000 classes and subtests
	io3000 error codes

	mem3000
	mem3000 classes and subtests
	User parameters
	mem3000 error codes
	Notes on mem3000

	Scan test
	utility test environment
	Running the est GUI
	Running
	from command line

	Utilities
	address decode
	AutoRaid recovery map (arrm)
	autoreset
	console
	consolebar
	cpu_hang
	dcm
	dfdutil
	dump_rdrs
	fwcp
	fw_init and fw_install
	get_node_info
	hard_logger
	lcd
	load_eprom
	opie
	pciromldr
	pim_dumper
	set_complex
	soft_decode
	sppconsole
	tc_init
	tc_ioutil
	tc_show_struct
	Version utilities
	Event processing
	Miscellaneous tools

	Scan tools
	sppdsh
	do_reset
	jf-node_info
	jf-ccmd_info
	jf-reserve_info

	A List of diagnostics
	B LED codes
	Power on detected errors
	SCUB detected memory power fail
	SCUB detected processor error
	SCUB detected I/O error
	SCUB detected fan error
	SCUB detected ambient air errors
	SCUB detected hard error
	SCUB detected intake ambient air error
	SCUB detected dc error
	Displaying the SCUB LED values using pce
	Identifying a node with the blink command

	C Memory configurations
	V2500/V2600 DIMM quadrant designations
	V2500/V2600 DIMM configuration rules
	V2500/V2600 memory board configuration rules
	Index

