
Abstract
This paper describes the architectural extensions to the

PA-RISC 1.1 architecture to enable 64-bit processing of
integers and pointers. It also describes MAX, the Multi-
media Acceleration eXtensions which speed up the proc-
essing of multimedia and other applications with
parallelism at the intra instruction, or subword, level.
Other additions to the PA-RISC 2.0 architecture include
performance enhancements with respect to memory hier-
archy management, branch penalty reduction, and
floating-point performance.

1. PA-RISC architecture evolution

When the original PA-RISC 1.0 Architecture was de-
signed in the early eighties, its goal was to be a single
architecture that efficiently spans Hewlett-Packard's three
computer lines: the HP3000 commercial minicomputers,
the HP9000 technical workstations and servers, and the
HP1000 realtime controllers. Before introduction, the
program was codenamed SPECTRUM. At introduction in
1986, it was known as HP's Precision Architecture [1,2],
HP-PA, or just PA. Subsequently, the architecture was
called PA-RISC, with the first version of the architecture
known as PA-RISC 1.0.

Since its introduction, the PA-RISC architecture has
remained remarkably stable. Only minor changes were
made over the next decade, to facilitate higher perform-
ance in floating-point and system processing. When PA-
RISC 1.0 was designed, floating-point performance was
not essential for the majority of the HP computer systems
targeted at that time. Hence, the architecture defined
floating-point support as optional coprocessor instruc-
tions, without emphasizing high performance. In 1989,
driven by the performance needs of the HP9000 technical
workstation line, PA-RISC 1.1 was introduced. This in-
cluded additional floating-point capabilities, such as
more floating-point registers, doubling the amount of reg-
ister space for single-precision floating-point numbers,
and introducing combined operation floating-point

instructions[3]. These floating-point features enabled
higher performance in technical computations, including
graphics, where single-precision floating-point numbers
are extensively used.

In the system area, PA-RISC 1.1 architectural exten-
sions were made to speed up the processing of
performance-sensitive abnormal events, such as misses in
the address translation cache (also called the TLB). Such
architectural changes are only visible to the operating
system, and do not affect any applications programs. Mi-
nor system changes have been added to the three editions
of the PA-RISC 1.1 architecture, known as editions 1, 2
and 3, respectively, of the architecture manual [3,4,5].

PA-RISC 1.1 also added bi-endian support. Previ-
ously, PA-RISC 1.0 was a consistently big endian ma-
chine, but in PA-RISC 1.1, support for little endian was
also provided by means of a mode bit.

The PA-RISC 2.0 architecture represents the first time
that user-visible changes have been made to the core inte-
ger architecture. In addition to support for 64-bit integer
data and 64-bit flat addresses, other user-visible changes
have also been added to enhance the performance of new
user workloads. For example, Multimedia Acceleration
eXtensions (MAX) have been added to speedup multime-
dia processing by software running on the main proces-
sor, rather than on separate optional hardware. Some
additional floating-point and system-level changes have
also been added. However, the principal of keeping the
programming model stable has been carried forward as
much as possible in the 64-bit version of the architecture,
which we will denote PA2 in the rest of this paper. PA-
RISC 1.0 and PA-RISC 1.1 versions of the architecture
are denoted PA1 in the rest of this paper.

In section 2 below, the design requirements for PA2
are outlined. In section 3, we describe the 64-bit exten-
sions for both data and addresses. In section 4, we de-
scribe the multimedia extensions. In section 5, we
describe other performance extensions.

64-bit and Multimedia Extensions in the PA-RISC 2.0 Architecture

Ruby Lee and Jerry Huck
Hewlett-Packard Company

19410 Homestead Road
Cupertino, CA 95014

rblee@cup.hp.com, huck@cup.hp.com

2. PA-RISC 2.0 requirements

PA1 was designed with the basic word size of 32 bits.
The word size determines the width of general registers
and datapaths for integer and address calculations. The
support for virtual addresses and floating-point was al-
ready 64 bits, even in the original architecture definition.
The basic goal of PA2 is to extend the PA-RISC architec-
ture to a word size of 64 bits, for integers, physical ad-
dresses and flat virtual addresses.

32-bit general registers and addresses with a maxi-
mum of 232 byte objects become limiters as physical
memories larger than 4 Gbytes become practical. Some
high-end applications are exceeding the 4 Gbyte
working-set size. Enabling future systems with higher
capacity and cost-effective use of this extra capacity is
required.

Another requirement is to maintain complete binary
compatibilty. That is, the binary representation of exist-
ing PA1 software programs must run correctly on PA2
processors.

The transition to 64-bit architectures is unlike the pre-
vious 32-bit microprocessor transition, which was driven
by an application pull. By the time that technology en-
abled cost-effective 32-bit processors, many applications
had already outgrown 16-bit size constraints, and were
"coping" with the 16-bit environment by awkward and in-
efficient means.

With the 64-bit transition, fewer applications need the
extra capabilities and many applications will choose to
forgo the transition. Due to cache memory effects, if an
application does not need the extra capacities of a 64-bit
architecture, then it can achieve greater performance by
remaining a 32-bit application. 64-bit architectures are
still necessary since some crucial applications - e.g. data-
bases and large scale engineering programs - and the op-
erating system itself will need the extra capacities
enabled by 64-bit architectures.

This analysis leads to the requirement that 32-bit ap-
plications are important and must not be penalized when
running on the 64-bit architecture. 32-bit applications
will remain a significant portion of the execution profile
and should also benefit from the increased capabilities of
the 64-bit architecture without being ported to a new en-
vironment. Of course, it is also a requirement to provide
full performance for 64-bit applications, and extended ca-
pabilities that are enabled by a wider machine.

Another requirement is to provide significant perform-
ance enhancements for new applications in the workload
profile, and new computing environments that will be
common during the lifetime of PA2. For example, the
shift in the workloads of both technical and business

computations to include an increasing amount of multi-
media processing led to the Multimedia Acceleration eX-
tensions (MAX) which are part of the PA2 architecture.
Previously, a subset of these multimedia instructions
were included in the PA7100LC processor, an implemen-
tation of the PA-RISC 1.1 architecture, as
implementation-specific features [6,7,8].

A final requirement is to introduce the 64-bit exten-
sions without disrupting the user community's under-
standing of the architecture. It is valuable to build on
how mechanisms work in PA1 processors and naturally
extend that definition. This requirement is usually easily
satisfied since it is often more awkward to deviate from
the current models.

Maintaining compatibility, enabling full 32-bit per-
formance, full 64-bit performance, new workload support
and increased performance capability present the archi-
tects with several fundamental tradeoffs. The next several
sections describe how these tradeoffs were resolved and
the resulting definition.

3. 64-bit extensions

3.1. 64-bit computation extensions

The PA-RISC computational model is extended to
64-bits for the general register file, integer computation
and address formation in PA2. These 64-bit extensions
provide instructions to operate on 64-bit operands with
the same capabilities that are provided for 32-bit oper-
ands. In a few cases, some functionality is not extended
to 64-bit elements (e.g.: divide step) and in some cases,
new capability is provided (e.g.: multimedia instruc-
tions). Addition, subtraction, logical operations, condi-
tion formation for branches and nullification, and bit
manipulation (extract and deposit instructions) are extended
in the obvious ways.

Not so obvious is how to maintain 32-bit element
compatibly in a 64-bit container. There are a few ap-
proaches. One strategy is to provide a duplicate set of in-
structions that operate on 32-bit operands and produce
consistent 64-bit results. This requires a modified ALU
to compute a different kind of result (e.g., sign-extend
across 32 bits), which may increase the cycle time of the
processor. In this model, comparisons and condition gen-
eration instructions need only look at the 64-bit result.
Computing a result from different sized operands will re-
quire an additional instruction to sign-extend one of the
operands.

Another approach is to include a mode bit that
changes the interpretation of all instructions to operate
only on one size data producing the same size result,

either all 32 bits or all 64 bits. While no new instructions
are required, this strategy restricts the mixing of 32-bit
and 64-bit data.

A final strategy, and the one chosen by PA-RISC, is to
treat all operands and results as 64-bits in size and pro-
vide extra instructions when a 32-bit interpretation is
needed. This keeps the simplest 64-bit ALU design to
enable high frequency. It does require a replication of
some shift instructions and conditional branch compari-
sons that use 32-bit operands.

One additional complication is the PA-RISC condi-
tional skip capability that is present in most computation
instructions. The condition needs to know if the oper-
ands are 32-bits or 64-bits in size. Fortunately, the PA1
architects had carefully left a free subop encoding bit in
the ALU instructions. In PA2, this is called the d-bit,
used to distinguish between 32-bit and 64-bit conditions,
overflows and carry, for the ALU instructions.

Another important issue is whether 32-bit load data is
sign- or zero-extended. Sign extension simplifies the
mixing of 32-bit and 64-bit data and addresses. Unfortu-
nately, it also adds sign extension circuitry to the critical
cache load path. Getting a higher frequency is worth the
one additional instruction needed for sign extension when
mixing 32-bit and 64-bit operands.

The floating-point register file is separate from the
general register file and is already 64-bits in size. 64-bit
signed integer formats already existed in the floating-
point register file. Compatibility is easily achieved by
replicating the few integer conversion operations. One
small complication is the need to introduce an unsigned
integer format. Conversions of 32-bit unsigned integers
are supported with the existing 64-bit signed conversions
(truncated overflows). To support 64-bit unsigned oper-
ands, PA2 includes unsigned integer to floating-point
conversion instructions. Otherwise, synthesizing an un-
signed convert from a signed convert requires several
instructions.

A 64-bit integer multiply is not defined since the ex-
isting double-precision multipliers are only 53x53-bit
multipliers. Widening to 64-bits would create extra de-
lays for floating-point operations. 64-bit integer multi-
plies can be synthesized from the existing 32-bit multiply
instruction.

3.2. 64-bit addressing extensions

The PA1 virtual addressing model combines a space
identifier and an offset, by concatenation, to form a
global virtual address that is shared by all processes [2].
Space identifiers are resources mostly managed by the
operating system. They specify where an address space
begins. Extending the offset to 64-bits is straightforward.

This gives each process 264 bytes of flat virtual address
space. The Space identifier will determine where in the
much larger global address space this region is. Protec-
tion is provided by using keys, called protection
identifiers.

Another consideration in the PA2 definition is the in-
teraction between the computation model for 32-bit com-
patibility and address formation. If the upper bits of a
register that contains a 32-bit pointer or index is always a
known value, then the entire 64-bits can be used as an ad-
dress in address computation. If the upper bits can be
polluted with overflows and other side-effects, then an
extra operation to clear (or maybe sign extend) these bits
is needed.

Since PA2 extends most computation instructions to
produce all 64-bits of the result as if the operands were
64-bit elements, a special mechanism - an address mode
bit - is introduced to maintain compatibility in address
formation. This is stored in the processor status word
(PSW) as the W(ide) bit. When zero, the upper bits of
the address are forced to zeros, and space register selec-
tion is from the two most significant bits of the 32 lower
bits. When one, all 64-bits participate in address forma-
tion, and space register selection is from the two most
significant bits of all 64 bits. This mechanism allows ex-
isting 32-bit PA1 programs to run, unchanged, on the
new PA2 processors. It also means that 32-bit programs
do not pay any penalty in extra instructions when com-
piled for a PA2 processor.

Since the mode bit only affects address formation,

32-bit applications still have access to 64-bit data regis-
ters and the full 64-bit computation instructions. For ex-
ample, a 32-bit program compiled for PA2 processors can
use 64-bit registers to support 64-bit objects, and libraries
can be written to use the extended capabilities of the PA2
architecture.

Figure 1: PA2 virtual addressing model

Address formation for 64-bit programs uses the upper
two bits of the base register to select a Space register,
much like the PA1 "short-pointer" address model[2]. The

32-bit30-bit

64-bit SID

96-bit Global Virtual Address

Logical OR

Offset

base register plus an immediate or index register forms
the space offset. However, while PA1 concatenates the
Space identifier and the offset, in PA2, the Space identi-
fier overlaps the upper bits of the offset and is logically
OR'ed together with these upper bits (see figure 1). This
leaves the position of the space register in the same rela-
tive place to form the global virtual address.

The overlap region is only 30 bits wide. The upper
2-bits of the 64-bit offset are not included in the global
virtual address formation since they are used to select the
Space identifier. From the hardware perspective, the
overlapped 30 bits of the offset are AND'ed with the
PSW W-bit. The AND's output is then OR'ed with the
lower 30 bits of the Space identifier. The W-bit acts to
zero the upper offset bits when in 32-bit address mode
and to pass those bits unchanged when in 64-bit address
mode. PA2 processors may implement up to 64-bit
Space identifiers, which allows 296 bytes of global virtual
address space.

While the hardware allows an arbitrary offset and
Space identifier to be combined, software conventions
will create non-overlapping regions of the global vitrual
address space, in which the offset and Space identifier
will be disjoint parts of the virtual address. Programs
that violate the conventions and address outside their per-
missible address space will be caught by the protection
identifier mechanism.

An alternative to this approach would have been to not
overlap the offset and Space identifier, and just use a sin-
gle AND gate with the W-bit. The AND/OR circuit is
slightly more expensive but provides better utilization of
the TLB by allowing variable-sized spaces, rather than
just fixed-sized spaces. Each TLB entry must include all
the address bits used on the lookup.

The PA-8000 processor [9], the first PA2 implementa-
tion, has 32-bit Space identifiers which allows 264 bytes
of global virtual address space. On the PA8000, the op-
erating system might choose to allocate a single large
space for all global shared objects (say 262 bytes in size),
allocate 16K spaces for 248 byte "large" processes and re-
serve the remainder (roughly 2 billion) of the spaces for
32-bit applications. The large processes have space iden-
tifiers with the low 16 bits zero and never generate off-
sets with more than 48 bits of significance.

The management of very large amounts of physical
memory also requires consideration of the basic page
size. The size of the processor's TLB is not growing as
quickly as the physical memory size. In some cases, the
TLB size is being trimmed to meet cycle time con-
straints. Uniformly increasing the page size is one ap-
proach, but an alternative is to allow variable-sized
pages. The implementation of an associative TLB is eas-
ily adapted to allow variable-sized pages. Entries specify

their page size and the hardware does the appropriate
masking of the virtual address bits. PA2 defines eight
page sizes ranging from the existing 4 Kbyte pages to 64
Mbytes by factors of 4. System software can choose to
use any or all of these different sizes.

These address mechanisms extend the PA1 architec-
ture to allow complete compatibility, more flexible ad-
dress space management, and a simple hardware
implementation. The width and number of the protection
identifier registers has also been increased to enable the
full utilization of these features.

Table 1: PA2 features for 64-bit support

New PA2 feature Motivation

d-bit in ALU instructions
(32-bit vs 64-bit conditions,
overflow, or carry-in)

mixed-mode (32-bit and
64-bit) computations and
data

Some replicated branch and
shift instructions with
immediates

mixed-mode data and
conditions

W-bit in PSW (Wide) 32-bit vs. 64-bit pointers

variable-sized spaces more flexible inter-space
management, and fewer
bits per TLB entry

variable-sized pages more flexible intra-space
management, and fewer
TLB entries

larger protection identifiers more flexible protection
regions

more protection identifier
registers

more efficient management
of protection identifiers

load/store double (64 bits) 64-bit memory access

Conversion between unsigned
integers and floating-point

Efficient integer handling
in floating-point unit

Space crossing branches Performance in dynamic
libraries

longer displacement call type
branch instructions

Reduced overhead in large
programs (ex. Databases)

longer displacement load and
store instructions (both GRs
and FRs)

greater reach in base plus
displacement addressing

3.3. Mixed-mode execution

Mixed-mode execution can refer to the mixing of
32-bit and 64-bit applications and operating systems, to
the mixing of 32-bit and 64-bit data and computations in
a single application, or to the mixing of 32-bit and 64-bit
data and pointers in a single application. PA2 supports
the first two definitions. The third definition requires too

many software restrictions to work efficiently under all
scenarios. Enabling it architecturally is insignificant
compared to the software changes needed to ensure cor-
rectness and efficiency.

 In the transition from 32-bits to 64-bits, the ability to
run 32-bit applications on existing 32-bit operating sys-
tems or new 64-bit operating systems is a key compatibil-
ity requirement, and is fully supported by the new
architecture. 32-bit applications may call a 64-bit operat-
ing system. The W-bit is changed from 0 to 1 to enable
this transition from 32-bit pointers to 64-bit pointers. Of
course, 32-bit applications may call 32-bit operating sys-
tems and 64-bit applications may call 64-bit operating
systems. The W-bit stays at 0 in the former case, and at
1 in the latter case. It is not meaningful for a true 64-bit
application to call a 32-bit operating system, since the
32-bit operating system would not be able to handle the
larger 64-bit data and flat addresses used by the 64-bit
application.

In the case of mixed-mode data, PA2 supports simul-
taneous computation on both 32-bit and 64-bit data. A
32-bit application has access to 64-bit data and opera-
tions, and a 64-bit application has access to 32-bit data
and operations. Note however, that this architectural
flexibility could be reduced by other software conven-
tions; for example, if the procedure calling convention
does not allow 64-bit callee-save registers in a 32-bit
application.

 Table 1 summarizes the additions to the architecture
for 64-bit data and addresses. The last two entries in Ta-
ble 1 provide increased reach in base-plus-displacement
addressing, especially useful since programs are getting
larger and their data regions are also growing.

4. Multimedia acceleration extensions

Workload characteristics have changed to include an
increasing amount of digital multimedia processing. This
includes the use of digital images, speech, 3-D graphics,
audio and video, in addition to the text, numbers and 2-D
graphics commonly handled by computers in the past.
Since most digital multimedia data is compressed for
more economical storage and transmission, merely read-
ing and writing multimedia data can involve compute-
intensive decompression and compression processing.

 Multimedia Acceleration eXtensions (MAX) are a
small set of instructions motivated by the desire to accel-
erate multimedia processing by software rather than by
special-purpose hardware. General-purpose processors
are increasing rapidly and steadily in performance so that
using software running on these processors to implement
functionality previously possible only with specialized

add-in boards seems feasible. The goal is to introduce in-
structions that provide significant performance improve-
ment with insignificant impact on the area, cycle-time
and design time of the PA-RISC processor.

Like other word-oriented processors, PA-RISC sup-
ports data that is larger or smaller than the word size. For
computations on integers larger than words, multi-
precision arithmetic is supported with a few simple in-
structions. For computations on integers smaller than
words, the least significant bits of the registers and data-
path are used. For example, computation on 16-bit inte-
gers in a 64-bit processor essentially wastes three quarters
of the 64-bit registers and integer datapaths. Many digital
multimedia representations use 8-bit, 12-bit or 16-bit data
for the basic pixel component or audio sample. Hence,
speeding up the processing of subword data is a promis-
ing, cost-effective approach to accelerate multimedia
programs.

MAX allows the parallel processing of packed sub-
words in a word-oriented processor. For example, four
16-bit subwords can be packed into a 64-bit word in PA2
processors. By merely blocking the carries at each 16-bit
boundary, a 64-bit adder can generate four 16-bit adds in
a single cycle. When the carries are not blocked at these
three subword boundaries, the adder performs the usual
64-bit add function. Hence, a parallel 16-bit add instruc-
tion uses the same resources as a standard 64-bit add in-
struction. It also reads two 64-bit general registers, takes
a pass through the ALU, and writes one 64-bit result reg-
ister. The only incremental overhead is the decoding of a
new instruction and the equivalent of three AND-gates to
block the carries at the appropriate subword boundaries
in the ALU. The MAX instructions speed up a multime-
dia program by reducing its pathlength (or number of in-
structions executed) [10].

Table 2 summarizes the MAX instructions in the PA2
architecture.

4.1. Parallel subword instructions

The most common arithmetic operations needed to ac-
celerate multimedia processing by a microprocessor, with
pre-existing integer and floating-point support, is some-
what different than for a Digital Signal Processor (DSP)
or a standalone media processor. In DSPs, the multiply-
accumulate operation is often a key primitive instruction.
But for many microprocessors, such as PA-RISC, this
function is already available in the floating-point unit.
Often, the audio processing and graphics transformations
that depend on this function are already adequately han-
dled by single-precision floating-point instructions.

Other pixel-oriented computations, like image and
video processing and graphics rendering, can be sped up

considerably with additional microprocessor instructions.
Here, the most frequent operations are often the simpler
add and subtract operations. Hence, Parallel Add, and

Parallel Subtract instructions are introduced.

The parallel add and subtract each have three variants,
which specify what happens on an overflow. The default
action is modular arithmetic, where any overflow is dis-
carded. If signed saturation is specified by an instruction
completer, an overflow causes the result to be clipped to
the largest or smallest signed integer in the result range,
depending on the direction of the overflow. Similarly, if
unsigned saturation is specified, an overflow causes the
result to be clipped to the largest or smallest unsigned in-
teger in the result range[6,7].

Table 2: Multimedia instructions in PA2

Parallel Subword Instruction Motivation

Parallel add
 with modular arithmetic
 with signed saturation
 with unsigned saturation

basic operation, where
saturation speeds up and
simplifies overflow
handling

Parallel subtract
 with modular arithmetic
 with signed saturation
 with unsigned saturation

as above

Parallel shift left & add
 with signed saturation

multiply by integer
constant

Parallel shift right & add
 with signed saturation

multiply by fractional
constant

Parallel average arithmetic mean; division
by 2

Parallel shift right arithmetic
 (propagates sign)

data alignment;
divide signed integer

Parallel shift right logical data alignment;
divide unsigned integer

Parallel shift left data alignment

Mix rearrange subwords from
two source registers

Permute rearrange subwords from
one source register

Often, the multiplications required are by constants.
This is sped up with Parallel Shift Left and Add, and Parallel
Shift Right and Add instructions. These two instructions are
very effective in implementing multiplication by integer
or fractional constants, respectively. They require just a
minor modification to the existing preshifter to the inte-
ger ALU, rather than a whole new multiplier functional
unit on the integer datapath.

The integer divisions are also often very simple ones.
For example, divide by two is commonly needed. This is
sped up with the Parallel Average instruction, which adds the

two operands, then performs a divide by two. This in-
volves a right shift of one bit. In the process, the over-
flow bit is shifted in as the most significant bit of the
result, so the instruction has the added advantage that no
overflow can occur.

Divisions by a power of two can also be done in paral-
lel by using the Parallel Shift Right (Arithmetic or Logical) instruc-
tions. These instructions may be used for division of
signed and unsigned subwords, respectively. They use
the existing 64-bit shifter, but block any bits shifted out
from one subword from being shifted into the adjoining
subword. Similarly, division by a constant can be simu-
lated with a combination of the above instructions.

While the Parallel Shift Right instructions may freely be
used for integer division, the Parallel Shift Left instruction
may only be used for multiplication if it is known that the
subword values are small enough so that overflow is not
possible during the left shift of each subword. No check-
ing is done for overflow, i.e., for significant bits shifted
out on the left of each subword in this instruction. This is
because the main use of the parallel shift instructions is
for data alignment. Here, each subword represents some
fixed-point number that should be pre- or post-aligned af-
ter some arithmetic operations.

4.2. Subword rearrangement instructions

Subword data stored sequentially in memory is often
ready for parallel processing with no further data rear-
rangement. Sometimes, the algorithm requires the sub-
words to be re-arranged within the word, so that further
parallel subword arithmetic may be applied. For example,
suppose the same algorithm must be applied to both the
rows and the columns of a matrix. Figure 2 shows a 4x4
matrix of 16-bit subwords, contained in four 64-bit regis-
ters. Starting with the left matrix, Parallel Subword in-
structions may be applied to four columns in parallel,
since these have data in the four separate subword tracks
in the registers. Then, in order to apply the same algo-
rithm to four rows in parallel, a 4x4 matrix transpose
should be done. This requires that the first subword of
four registers be packed into a single register. Similarly,
for the second subwords, the third subwords and the
fourth subwords. This is shown by the matrix on the
right in figure 2.

Figure 2: 4x4 matrix of 16-bit subwords

 original matrix transposed matrix

Ra= a1 a2 a3 a4 Re= a1 b1 c1 d1

Rb= b1 b2 b3 b4 Rf= a2 b2 c2 d2

Rc= c1 c2 c3 c4 Rg= a3 b3 c3 d3

Rd= d1 d2 d3 d4 Rh= a4 b4 c4 d4

The conventional way to achieve this is by storing the

subwords back into different locations in memory, then
reading them back as a word, with the subwords in the re-
arranged positions within the word. Considerable
speedup may be achieved if the subwords can be re-
arranged within the register file, rather than going
through memory with store and load instructions. With
PA2, we introduce the versatile and novel Mix and Permute

instructions, for such subword rearrangements within the
register file.

The Mix instructions take subwords from two registers,
and interleave alternate subwords from each register in
the result register. Mix Left starts from the leftmost sub-
word in each of the two source registers, while Mix Right

ends with the rightmost subwords from each source regis-
ter. Mix is defined for 2-byte (16-bit) and 4-byte (32-bit)
subwords as shown in figure 3.

Figure 3: Mix instructions

Let Ra = a1 a2 a3 a4,
and Rb = b1 b2 b3 b4.

Mix Left, 2byte, Ra,Rb,Rc Rc = a1 b1 a3 b3

Mix Right, 2byte, Ra,Rb,Rc Rc = a2 b2 a4 b4

Mix Left, 4byte, Ra, Rb, Rc Rc = a1 a2 b1 b2

Mix Right, 4byte, Ra,Rb,Rc Rc = a3 a4 b3 b4

A 4x4 matrix transpose, as shown in figure 2, can be
done with just 8 such Mix instructions.

The Permute instruction takes one source register, and
produces a permutation of the subwords in that register.
With 2-byte subwords, this instruction allows all 256
possible permutations, with and without repetitions, of
the four subwords in the source register. Figure 4 shows
some possible permutations:

Figure 4: Permute instruction examples

Let source register = a b c d
Then some possible permutations are:

a a a a permutation with repetition

d c b a permutation without repetition

b a a d with repetition

c c a a with repetition

a d b c without repetition

The Mix and Permute instructions are useful for inner-
loop subword data rearrangement operations. They are
also useful for data formatting. For example, the Mix in-
struction with register zero as one source, can be used to
expand 2-byte subwords into 4-byte subwords. After the
desired computation has been done with this expanded

precision, a Mix instruction can also contract the 4 byte
subwords contained in two registers, back into 2-byte
subwords.

5. Other performance extensions

Table 3 shows some other features defined by PA2 for
added performance and functionality. These were care-
fully chosen to avoid adding any additional circuitry in
critical paths. Most control registers have also been ex-
tended to 64-bits in width.

Table 3: Other performance features

New PA2 features Motivation

Cache hint: Spatial Locality Prevent cache pollution when
data has no reuse

Cache Line Prefetch Reduce cache miss penalty,
and prefetch penalty by
disallowing TLB miss

Weakly ordered memory
accesses

Enable higher performance
memory systems

Conditional Branch
Prediction Convention

improve conditional branch
performance

Hints for Procedure return
stack

improve unconditional branch
performance

FMAC Higher FLOP capability

Multiple FP condition bits Greater parallelism in
floating-point comparisons

5.1. Cache and memory extensions

Another crucial parameter in high performance proc-
essors is how effective the memory hierarchy is in reduc-
ing memory latencies. Caches are effective in reducing
latencies, but additional improvements can be made by
explicitly specifying in an instruction the best strategy for
handling a memory reference. The PA2 architecture de-
fines an additional cache hint - spatial locality - that
specifies that an operand and nearby data is needed, but
need only be buffered and not placed in the cache. Pro-
grams that read and write large quantities of data with lit-
tle or no re-use are best candidates for this hint.

In one measurement of a database application, the op-
erating system kernel's block copy routine was observed
to cache miss on nearly all (approx. 96%) of its sources
and targets. Presumably the target is soon needed, but
the routine would benefit by specifying spatial locality on
the data fetches and reduce cache pollution and memory
bandwidth usage.

An additional mechanism that is defined for PA2 proc-
essors, is a cache prefetch instruction that signifies not

only that the data should be loaded but also the desired
cache state (shared or exclusive). This instuction ignores
the normal memory TLB exceptions. Ignoring excep-
tions allows a much more aggressive use of the feature by
the compiler. With this definition, the compiler does not
need to verify the validity of the address. The compiler
will still want to avoid memory bandwidth waste and not
prefetch cache lines that will not be used.

By extending the control of the compiler to explicitly
manage the memory heirarchy when it has knowledge of
the access patterns or feedback from prior executions of
the code, additional synergy is achieved between the
processor and the compiler. These cache management
features enable more effective use of the memory
hierarchy.

To enable highly concurrent main memory implemen-
tations, memory accesses in PA2 are considered weakly
ordered, unless the load or store instruction is marked as
strongly ordered. In a weakly ordered memory system,
the order in which memory access instructions appear in
the program need not be the order in which they are com-
pleted. Since PA1 assumed a strongly ordered model of
memory accesses, an O(rdered)-bit in the PSW can force
the system to behave as if all memory accesses were
strongly ordered for backward compatibility.

5.2. Conventions for branch penalty reduction

The penalties associated with branch execution are be-
coming major barriers to higher performance parallel is-
sue processors. Conventions have been used by some
machines to decide whether a branch should be predicted
taken or not. In PA1, simple static prediction, where
backward branches are predicted taken and forward
branches are predicted not taken, was optimized by the
conditional branch delay-slot nullification scheme [1,2].
Augmenting this static prediction with dynamic predic-
tion is a further improvement.

An additional improvement is to allow the compiler
more control in specifying the type of prediction that
should be used. In the most general case, the compiler
would like to specify the prediction outcome under a va-
riety of conditions. Whether this branch predictor is in a
dynamic structure, what kind of predictor to use, and
static information could all contribute to a prediction. In
the case of PA-RISC, no free encodings are available to
give this flexibility. Instead, a convention is defined to
indicate the compilers best static prediction for a given
branch. The conditional branch comparison instructions
have redundant encodings that can be exploited by re-
versing the order of the operands and relation. For exam-
ple,

comb,<= r5,r7,target

is the same as:
comb,> r7,r5,target.

but allows a different branch prediction hint.
The following branch prediction convention is defined

for PA2 processors. If the register numbers in the condi-
tional branch instruction are in ascending order, the
branch is predicted in one direction, otherwise the branch
is predicted the other direction. The instruction set had
enough redundancy to allow many branches to be hinted
in this way. Conditional branch instructions involving
comparisons with immediate operands do not have this
flexibility. For those situations, an extra instruction to
copy the immediate to a register can be generated to al-
low the hinted form.

While this approach allows most branches to have pre-
diction indications, using register number order is just a
convenience. Having a dedicated bit would be more de-
sirable since it is simpler to decode.

Another area for branch prediction is the management
of the return addresses. Using a simple push-down stack
of branch addresses, most procedure returns can be cor-
rectly predicted. The PA2 architecture includes hints to
push and pop procedure return values.

5.3. Floating-Point performance

A few additions are also made to improve floating-
point performance. The floating-point Multiply Accumu-
late instruction takes three floating-point source registers,
multiplies two of them, accumulates the product with the
third register, and writes the result into another register.
Only one rounding function is done to preserve accuracy.
This instruction increases the performance of many
floating-point intensive computations, including many
audio, graphics transformations, and DSP type applica-
tions where single-precision floating-point accuracy is
desired.

Another feature is to allow the setting and testing of 8
floating-point condition bits, rather than just one floating-
point condition bit.

6. Summary

This paper has described the PA-RISC 2.0 architec-
ture. While full support for 64-bit integers, physical ad-
dresses, and flat virtual addresses is provided, the
instructions themselves have remained at 32 bits. Hence,
much of the innovation in the 64-bit extensions has been
in encoding the desired new functionality in the remain-
ing unused instruction encodings.

The 64-bit extensions provide full-performance 32-bit
compatibility for existing PA-RISC 1.0 and PA-RISC 1.1
programs. 32-bit applications can use 64-bit operations
and vice versa, for data computations. Switching be-
tween 32-bit and 64-bit pointers is provided by the Wide-
bit. Full-performance 64-bit programs and operating sys-
tems is also enabled.

PA2 also provides innovative new capabilities for new
applications, such as multimedia information processing,
that will be important in the lifetime of the 64-bit archi-
tecture. Features are also added to improve the perform-
ance of the cache and memory system, branching, and
floating-point execution.

PA2 maintains the programming models of the PA1
architecture [2,10]. Also, none of the additional features
added to the architecture have any significant impact on
the basic processor cycle time, which is determined by
the cache-hit path, and the 64-bit ALU path. Yet, they
extend the PA-RISC architecture for the next generation
of software and hardware for full-performance 64-bit pro-
grams, compatible, full-performance 32-bit programs,
new applications, and performance-aggressive
implementations.

7. Acknowledgements

The authors would like to thank the PA-RISC Exten-
sions team, especially Michael Mahon.

8. Bibliography

[1] Mahon M., Lee R., Miller T., Huck J., Bryg W,
"Hewlett-Packard Precision Architecture: The

Processor", Hewlett-Packard Journal, vol . 37 no. 8, Aug.
1986, pp. 4-21.

[2] Lee R., "Precision Architecture", IEEE Computer, vol. 22
no. 1, Jan 1989, pp. 78-91.

[3] PA-RISC 1.1 Architecture and Instruction Set Reference
Manual, 1st. edition, Part Number 09740-90039,
Hewlett-Packard, November 1990.

[4] PA-RISC 1.1 Architecture and Instruction Set Reference
Manual, 2nd. edition, Part Number 09740-90039,
Hewlett-Packard, November 1992.

[5] PA-RISC 1.1 Architecture and Instruction Set Reference
Manual, 3rd edition, Part Number 09740-90039,
Hewlett-Packard, February 1994.

[6] Lee R.B., "Accelerating Multimedia with Enhanced
Microprocessors", IEEE Micro, vol. 15, no. 2, Apr. 1995,
pp.22-32.

[7] Lee R., "Multimedia Acceleration with Subword
Parallelism in Microprocessors", Distinguished Lecture
Series X, recorded March 24, 1995, University Video
Communications, P.O.Box 5129, Stanford, CA 94309.

[8] Gwennap L., "New PA-RISC Processor Decodes MPEG
Video", Microprocessor Report Vol 8 Num 1, Jan 24,
1994, pp . 16-17.

[9] Hunt D., "Advanced Performance Features of the 64-bit
PA8000", Proceedings of IEEE Compcon, March 5-9,
1995, San Francisco, California.

[10] Lee R., Mahon M. and Morris D., "Pathlength Reduction
Features in the PA-RISC Architecture", Proceedings of
IEEE Compcon, February 24-28, 1992, San Francisco,
California, pp. 129-135.

[11] PA-RISC 2.0 Architecture, Kane G., Prentice Hall, IBSN:
013-182-7340, 1995.

